生物
基因组生物学
RNA序列
计算生物学
基因组学
进化生物学
遗传学
转录组
基因组
基因
基因表达
作者
Michael I. Love,Wolfgang Huber,Simon Anders
出处
期刊:Genome Biology
[Springer Nature]
日期:2014-12-05
卷期号:15 (12)
被引量:70421
标识
DOI:10.1186/s13059-014-0550-8
摘要
Abstract In comparative high-throughput sequencing assays, a fundamental task is the analysis of count data, such as read counts per gene in RNA-seq, for evidence of systematic changes across experimental conditions. Small replicate numbers, discreteness, large dynamic range and the presence of outliers require a suitable statistical approach. We present DESeq2 , a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates. This enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression. The DESeq2 package is available at http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html .
科研通智能强力驱动
Strongly Powered by AbleSci AI