Band alignment of epitaxial ZnS/Zn3P2 heterojunctions

异质结 覆盖层 带偏移量 外延 钝化 光电子学 材料科学 密度泛函理论 半导体 带隙 分子束外延 带材弯曲 化学 电子能带结构 凝聚态物理 纳米技术 计算化学 价带 图层(电子) 物理化学 物理
作者
Jeffrey P. Bosco,Steven Brian Demers,Gregory M. Kimball,Nathan S. Lewis,Harry A. Atwater
出处
期刊:Journal of Applied Physics [American Institute of Physics]
卷期号:112 (9) 被引量:41
标识
DOI:10.1063/1.4759280
摘要

The energy-band alignment of epitaxial zb-ZnS(001)/α-Zn3P2(001) heterojunctions has been determined by measurement of shifts in the phosphorus 2p and sulfur 2p core-level binding energies for various thicknesses (0.6–2.2 nm) of ZnS grown by molecular beam epitaxy on Zn3P2. In addition, the position of the valence-band maximum for bulk ZnS and Zn3P2 films was estimated using density functional theory calculations of the valence-band density-of-states. The heterojunction was observed to be type I, with a valence-band offset, ΔEV, of −1.19 ± 0.07 eV, which is significantly different from the type II alignment based on electron affinities that is predicted by Anderson theory. n+-ZnS/p-Zn3P2 heterojunctions demonstrated open-circuit voltages of >750 mV, indicating passivation of the Zn3P2 surface due to the introduction of the ZnS overlayer. Carrier transport across the heterojunction devices was inhibited by the large conduction-band offset, which resulted in short-circuit current densities of <0.1 mA cm−2 under 1 Sun simulated illumination. Hence, constraints on the current density will likely limit the direct application of the ZnS/Zn3P2 heterojunction to photovoltaics, whereas metal-insulator-semiconductor structures that utilize an intrinsic ZnS insulating layer appear promising.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhuzhu完成签到 ,获得积分10
刚刚
刚刚
畅快的半仙完成签到,获得积分10
刚刚
黄晓荷发布了新的文献求助10
1秒前
充电宝应助niuniu采纳,获得10
1秒前
极乐鸟发布了新的文献求助10
1秒前
JiaYY完成签到,获得积分10
1秒前
今后应助律政俏佳人采纳,获得10
1秒前
小二郎应助momo采纳,获得10
1秒前
XySun完成签到,获得积分10
2秒前
lichanshen完成签到,获得积分10
2秒前
李白白发布了新的文献求助10
3秒前
等待晓筠完成签到,获得积分10
3秒前
3秒前
爱撒娇的沛萍完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
Akim应助许译匀采纳,获得10
4秒前
4秒前
523发布了新的文献求助10
4秒前
六六完成签到 ,获得积分10
5秒前
科研小白发布了新的文献求助10
5秒前
阿巴阿巴完成签到,获得积分10
5秒前
5秒前
东皇小豆丁完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
养叶子发布了新的文献求助10
6秒前
锤你发布了新的文献求助10
6秒前
小魏小魏完成签到,获得积分10
6秒前
慕青应助考马斯亮蓝采纳,获得10
6秒前
7秒前
7秒前
张智发布了新的文献求助10
8秒前
义气遥完成签到,获得积分10
8秒前
8秒前
CipherSage应助疯狂花生采纳,获得10
8秒前
SciGPT应助极乐鸟采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661525
求助须知:如何正确求助?哪些是违规求助? 4838950
关于积分的说明 15096313
捐赠科研通 4820245
什么是DOI,文献DOI怎么找? 2579795
邀请新用户注册赠送积分活动 1534060
关于科研通互助平台的介绍 1492773