小干扰RNA
体内分布
核酸
生物物理学
体内
纳米技术
化学
内化
纳米颗粒
基因沉默
分散性
药物输送
转染
细胞
材料科学
体外
生物化学
生物
基因
生物技术
有机化学
作者
Hyukjin Lee,Abigail K. R. Lytton‐Jean,Yi Chen,Kevin T. Love,Angela I. Park,Emmanouil D. Karagiannis,Alfica Sehgal,William Querbes,Christopher Zurenko,Muthusamy Jayaraman,Chang Geng Peng,Klaus Charissé,Anna Borodovsky,Muthiah Manoharan,Jessica S. Donahoe,Jessica Truelove,Matthias Nahrendorf,Róbert Langer,Daniel G. Anderson
标识
DOI:10.1038/nnano.2012.73
摘要
Nanoparticles are used for delivering therapeutics into cells1,2. However, size, shape, surface chemistry and the presentation of targeting ligands on the surface of nanoparticles can affect circulation half-life and biodistribution, cell-specific internalization, excretion, toxicity and efficacy3,4,5,6,7. A variety of materials have been explored for delivering small interfering RNAs (siRNAs)—a therapeutic agent that suppresses the expression of targeted genes8,9. However, conventional delivery nanoparticles such as liposomes and polymeric systems are heterogeneous in size, composition and surface chemistry, and this can lead to suboptimal performance, a lack of tissue specificity and potential toxicity10,11,12. Here, we show that self-assembled DNA tetrahedral nanoparticles with a well-defined size can deliver siRNAs into cells and silence target genes in tumours. Monodisperse nanoparticles are prepared through the self-assembly of complementary DNA strands. Because the DNA strands are easily programmable, the size of the nanoparticles and the spatial orientation and density of cancer-targeting ligands (such as peptides and folate) on the nanoparticle surface can be controlled precisely. We show that at least three folate molecules per nanoparticle are required for optimal delivery of the siRNAs into cells and, gene silencing occurs only when the ligands are in the appropriate spatial orientation. In vivo, these nanoparticles showed a longer blood circulation time (t1/2 ≈ 24.2 min) than the parent siRNA (t1/2 ≈ 6 min). DNA strands can self-assemble into tetrahedral nanoparticles that can deliver small interfering RNA molecules to cells and suppress genes in tumours.
科研通智能强力驱动
Strongly Powered by AbleSci AI