Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow

细胞生物学 肠上皮 细胞外基质 蠕动 生物物理学 势垒函数 芯片上器官 微流控 上皮 化学 小肠 生物 纳米技术 生物化学 材料科学 遗传学
作者
Hyun Jung Kim,Dongeun Huh,Geraldine A. Hamilton,Donald E. Ingber
出处
期刊:Lab on a Chip [The Royal Society of Chemistry]
卷期号:12 (12): 2165-2165 被引量:1481
标识
DOI:10.1039/c2lc40074j
摘要

Development of an in vitro living cell-based model of the intestine that mimics the mechanical, structural, absorptive, transport and pathophysiological properties of the human gut along with its crucial microbial symbionts could accelerate pharmaceutical development, and potentially replace animal testing. Here, we describe a biomimetic ‘human gut-on-a-chip’ microdevice composed of two microfluidic channels separated by a porous flexible membrane coated with extracellular matrix (ECM) and lined by human intestinal epithelial (Caco-2) cells that mimics the complex structure and physiology of living intestine. The gut microenvironment is recreated by flowing fluid at a low rate (30 μL h−1) producing low shear stress (0.02 dyne cm−2) over the microchannels, and by exerting cyclic strain (10%; 0.15 Hz) that mimics physiological peristaltic motions. Under these conditions, a columnar epithelium develops that polarizes rapidly, spontaneously grows into folds that recapitulate the structure of intestinal villi, and forms a high integrity barrier to small molecules that better mimics whole intestine than cells in cultured in static Transwell models. In addition, a normal intestinal microbe (Lactobacillus rhamnosus GG) can be successfully co-cultured for extended periods (>1 week) on the luminal surface of the cultured epithelium without compromising epithelial cell viability, and this actually improves barrier function as previously observed in humans. Thus, this gut-on-a-chip recapitulates multiple dynamic physical and functional features of human intestine that are critical for its function within a controlled microfluidic environment that is amenable for transport, absorption, and toxicity studies, and hence it should have great value for drug testing as well as development of novel intestinal disease models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
团子完成签到,获得积分10
1秒前
丰知然应助科研通管家采纳,获得10
1秒前
丰知然应助科研通管家采纳,获得10
1秒前
1秒前
丰知然应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
2秒前
2秒前
打打应助科研通管家采纳,获得10
2秒前
稳重雁易完成签到 ,获得积分10
2秒前
nix应助在雨中不说雨采纳,获得10
2秒前
缓慢的夕阳完成签到,获得积分10
2秒前
luu发布了新的文献求助10
3秒前
3秒前
玉崟完成签到 ,获得积分10
3秒前
4秒前
烟花应助椿上春树采纳,获得10
4秒前
港崽宝宝完成签到,获得积分10
5秒前
平常的玲完成签到,获得积分10
5秒前
加油少年完成签到,获得积分10
5秒前
wad1314完成签到,获得积分10
5秒前
高速旋转老沁完成签到 ,获得积分10
5秒前
5秒前
大模型应助pH采纳,获得10
6秒前
小鱼爱吃肉应助香菜采纳,获得10
6秒前
美好的醉波完成签到,获得积分10
6秒前
香蕉觅云应助灿烂采纳,获得10
6秒前
7秒前
7秒前
7秒前
7秒前
Bao关注了科研通微信公众号
8秒前
陌路孤星发布了新的文献求助10
8秒前
8秒前
水沝完成签到 ,获得积分10
8秒前
老衲完成签到,获得积分0
8秒前
charry完成签到,获得积分10
9秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299039
求助须知:如何正确求助?哪些是违规求助? 2934083
关于积分的说明 8466490
捐赠科研通 2607435
什么是DOI,文献DOI怎么找? 1423733
科研通“疑难数据库(出版商)”最低求助积分说明 661661
邀请新用户注册赠送积分活动 645297