Biomass Characterization: Recent Progress in Understanding Biomass Recalcitrance

生物量(生态学) 木质纤维素生物量 生化工程 生物燃料 生物能源 制浆造纸工业 酶水解 生物技术 生物炼制 化学 环境科学 水解 农学 有机化学 生物 工程类
作者
Marcus Foston,Arthur J. Ragauskas
出处
期刊:Industrial Biotechnology [Mary Ann Liebert]
卷期号:8 (4): 191-208 被引量:112
标识
DOI:10.1089/ind.2012.0015
摘要

The ever-increasing global demand for energy and materials has a pronounced effect on worldwide economic stability, diplomacy, and technical advancement. In response, a recent key research area in biotechnology has centered on the biological conversion of lignocellulosic biomass to simple sugars. Lignocellulosic biomass, converted to fermentable sugars via enzymatic hydrolysis of cell wall polysaccharides, can be utilized to generate a variety of downstream fuels and chemicals. Ethanol, in particular, has a high potential as transportation fuel to supplement or even replace gasoline derived from petroleum feedstocks. Biological or enzymatic hydrolysis offers the potential for low-cost, high-yield, and selective production of targeted chemicals and value-added co-products at milder operating conditions than thermochemical processes such as gasification or pyrolysis. Due to the complex nature of biomass, degrading enzymes, and their interactions, there is a substantial knowledge gap with respect to the mechanism of enzymatic hydrolysis and the relationship between biomass structure and enzymatic performance. This knowledge gap has greatly contributed to the fact that biological conversion of lignocellulosic biomass has not met the target performance and cost requirements for large-scale production and market entrance. This review highlights recent advances in analytical methods to characterize the chemical and molecular features related to the ability of biomass to resist biological deconstruction, defined as biomass recalcitrance. We also briefly discuss the application of some of these methods in a variety of studies that draw attention to relationships between biomass structure, the effectiveness of enzymatic hydrolysis and biomass recalcitrance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiejh发布了新的文献求助10
1秒前
airsh发布了新的文献求助30
1秒前
猪猪hero发布了新的文献求助20
2秒前
bhkwxdxy完成签到,获得积分10
3秒前
4秒前
4秒前
及时雨发布了新的文献求助10
5秒前
5秒前
小二郎应助lxr8900采纳,获得10
6秒前
叮叮完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
8秒前
在水一方应助猪猪hero采纳,获得10
8秒前
图图完成签到,获得积分10
10秒前
iris完成签到,获得积分20
11秒前
梁昕应助耿昭采纳,获得10
13秒前
鲤鱼完成签到 ,获得积分10
13秒前
13秒前
能南烟发布了新的文献求助10
13秒前
bingbingsha发布了新的文献求助10
14秒前
123发布了新的文献求助10
15秒前
huan发布了新的文献求助10
16秒前
16秒前
16秒前
天天快乐应助Charlie采纳,获得10
16秒前
阳光下的微风应助OsHTAS采纳,获得10
16秒前
17秒前
ZY发布了新的文献求助10
17秒前
Jgogo发布了新的文献求助10
21秒前
22秒前
22秒前
zqy1111完成签到,获得积分10
23秒前
23秒前
123456789完成签到,获得积分10
24秒前
24秒前
hins应助科研小白采纳,获得20
24秒前
结实的念柏完成签到,获得积分10
25秒前
Eraser发布了新的文献求助200
25秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 纳米技术 物理 计算机科学 化学工程 基因 复合材料 遗传学 物理化学 免疫学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3416011
求助须知:如何正确求助?哪些是违规求助? 3017735
关于积分的说明 8882350
捐赠科研通 2705345
什么是DOI,文献DOI怎么找? 1483501
科研通“疑难数据库(出版商)”最低求助积分说明 685735
邀请新用户注册赠送积分活动 680742