Improving compound–protein interaction prediction by building up highly credible negative samples

生物信息学 计算机科学 机器学习 计算生物学 贝叶斯概率 人工智能 集合(抽象数据类型) 数据挖掘 生物 遗传学 基因 程序设计语言
作者
Hui Liu,Jianjiang Sun,Jihong Guan,Jie Zheng,Shuigeng Zhou
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:31 (12): i221-i229 被引量:241
标识
DOI:10.1093/bioinformatics/btv256
摘要

Abstract Motivation: Computational prediction of compound–protein interactions (CPIs) is of great importance for drug design and development, as genome-scale experimental validation of CPIs is not only time-consuming but also prohibitively expensive. With the availability of an increasing number of validated interactions, the performance of computational prediction approaches is severely impended by the lack of reliable negative CPI samples. A systematic method of screening reliable negative sample becomes critical to improving the performance of in silico prediction methods. Results: This article aims at building up a set of highly credible negative samples of CPIs via an in silico screening method. As most existing computational models assume that similar compounds are likely to interact with similar target proteins and achieve remarkable performance, it is rational to identify potential negative samples based on the converse negative proposition that the proteins dissimilar to every known/predicted target of a compound are not much likely to be targeted by the compound and vice versa. We integrated various resources, including chemical structures, chemical expression profiles and side effects of compounds, amino acid sequences, protein–protein interaction network and functional annotations of proteins, into a systematic screening framework. We first tested the screened negative samples on six classical classifiers, and all these classifiers achieved remarkably higher performance on our negative samples than on randomly generated negative samples for both human and Caenorhabditis elegans. We then verified the negative samples on three existing prediction models, including bipartite local model, Gaussian kernel profile and Bayesian matrix factorization, and found that the performances of these models are also significantly improved on the screened negative samples. Moreover, we validated the screened negative samples on a drug bioactivity dataset. Finally, we derived two sets of new interactions by training an support vector machine classifier on the positive interactions annotated in DrugBank and our screened negative interactions. The screened negative samples and the predicted interactions provide the research community with a useful resource for identifying new drug targets and a helpful supplement to the current curated compound–protein databases. Availability: Supplementary files are available at: http://admis.fudan.edu.cn/negative-cpi/. Contact: sgzhou@fudan.edu.cn Supplementary Information: Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自行输入昵称完成签到 ,获得积分10
刚刚
欣喜的莫茗完成签到 ,获得积分10
刚刚
聪明伊完成签到,获得积分10
1秒前
我是老大应助Zoe采纳,获得50
1秒前
Prozac发布了新的文献求助50
1秒前
乐乐应助小琦琦采纳,获得10
1秒前
xu完成签到 ,获得积分20
2秒前
3秒前
4秒前
4秒前
情怀应助科研小白采纳,获得10
4秒前
谦让寒云完成签到 ,获得积分10
6秒前
可乐发布了新的文献求助10
7秒前
Zo完成签到,获得积分10
7秒前
大模型应助liu采纳,获得10
8秒前
美丽的又菡完成签到,获得积分10
9秒前
10秒前
10秒前
Akim应助Sun采纳,获得10
11秒前
12秒前
Deadman完成签到,获得积分10
12秒前
Ruyii完成签到,获得积分10
13秒前
14秒前
16秒前
活泼蜡烛发布了新的文献求助10
16秒前
16秒前
科研小白发布了新的文献求助10
17秒前
憨憨发布了新的文献求助10
17秒前
MOJIN发布了新的文献求助10
18秒前
ZDY完成签到,获得积分10
18秒前
19秒前
Chelry发布了新的文献求助10
19秒前
路敏完成签到,获得积分10
20秒前
21秒前
天天快乐应助科研通管家采纳,获得10
21秒前
ED应助科研通管家采纳,获得10
21秒前
NexusExplorer应助科研通管家采纳,获得10
21秒前
谦让含玉发布了新的文献求助20
21秒前
丘比特应助科研通管家采纳,获得10
21秒前
CodeCraft应助科研通管家采纳,获得10
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992229
求助须知:如何正确求助?哪些是违规求助? 3533231
关于积分的说明 11261619
捐赠科研通 3272656
什么是DOI,文献DOI怎么找? 1805867
邀请新用户注册赠送积分活动 882720
科研通“疑难数据库(出版商)”最低求助积分说明 809452