Improving compound–protein interaction prediction by building up highly credible negative samples

生物信息学 计算机科学 机器学习 计算生物学 贝叶斯概率 人工智能 集合(抽象数据类型) 数据挖掘 生物 遗传学 基因 程序设计语言
作者
Hui Liu,Jianjiang Sun,Jihong Guan,Jie Zheng,Shuigeng Zhou
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:31 (12): i221-i229 被引量:241
标识
DOI:10.1093/bioinformatics/btv256
摘要

Abstract Motivation: Computational prediction of compound–protein interactions (CPIs) is of great importance for drug design and development, as genome-scale experimental validation of CPIs is not only time-consuming but also prohibitively expensive. With the availability of an increasing number of validated interactions, the performance of computational prediction approaches is severely impended by the lack of reliable negative CPI samples. A systematic method of screening reliable negative sample becomes critical to improving the performance of in silico prediction methods. Results: This article aims at building up a set of highly credible negative samples of CPIs via an in silico screening method. As most existing computational models assume that similar compounds are likely to interact with similar target proteins and achieve remarkable performance, it is rational to identify potential negative samples based on the converse negative proposition that the proteins dissimilar to every known/predicted target of a compound are not much likely to be targeted by the compound and vice versa. We integrated various resources, including chemical structures, chemical expression profiles and side effects of compounds, amino acid sequences, protein–protein interaction network and functional annotations of proteins, into a systematic screening framework. We first tested the screened negative samples on six classical classifiers, and all these classifiers achieved remarkably higher performance on our negative samples than on randomly generated negative samples for both human and Caenorhabditis elegans. We then verified the negative samples on three existing prediction models, including bipartite local model, Gaussian kernel profile and Bayesian matrix factorization, and found that the performances of these models are also significantly improved on the screened negative samples. Moreover, we validated the screened negative samples on a drug bioactivity dataset. Finally, we derived two sets of new interactions by training an support vector machine classifier on the positive interactions annotated in DrugBank and our screened negative interactions. The screened negative samples and the predicted interactions provide the research community with a useful resource for identifying new drug targets and a helpful supplement to the current curated compound–protein databases. Availability: Supplementary files are available at: http://admis.fudan.edu.cn/negative-cpi/. Contact: sgzhou@fudan.edu.cn Supplementary Information: Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yinghuo完成签到,获得积分10
刚刚
1秒前
1秒前
805发布了新的文献求助10
1秒前
liu发布了新的文献求助10
2秒前
nuliya发布了新的文献求助10
2秒前
伶俐凡白完成签到,获得积分10
3秒前
wenbo完成签到,获得积分0
3秒前
晴云发布了新的文献求助10
3秒前
乐妙发布了新的文献求助10
3秒前
NXK发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
科研通AI6应助悦耳的小夏采纳,获得30
4秒前
汉堡包应助666采纳,获得10
4秒前
wenwen完成签到,获得积分10
5秒前
JamesPei应助ds采纳,获得10
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
cheifly发布了新的文献求助10
6秒前
monned发布了新的文献求助10
6秒前
1210xi完成签到,获得积分10
7秒前
8秒前
现安完成签到,获得积分10
8秒前
Cc8完成签到,获得积分10
8秒前
8秒前
格非完成签到,获得积分0
8秒前
打打应助科研通管家采纳,获得10
8秒前
刘钱美子完成签到,获得积分10
8秒前
8秒前
深情安青应助科研通管家采纳,获得50
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
axiba完成签到,获得积分10
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
烟花应助科研通管家采纳,获得10
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
大模型应助科研通管家采纳,获得10
9秒前
桐桐应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Carbon black : production, properties, and applications. Ch. 4 in Marsh H 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5414070
求助须知:如何正确求助?哪些是违规求助? 4531003
关于积分的说明 14126139
捐赠科研通 4446247
什么是DOI,文献DOI怎么找? 2439384
邀请新用户注册赠送积分活动 1431483
关于科研通互助平台的介绍 1409185