Improving compound–protein interaction prediction by building up highly credible negative samples

生物信息学 计算机科学 机器学习 计算生物学 贝叶斯概率 人工智能 集合(抽象数据类型) 数据挖掘 生物 遗传学 基因 程序设计语言
作者
Hui Liu,Jianjiang Sun,Jihong Guan,Jie Zheng,Shuigeng Zhou
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:31 (12): i221-i229 被引量:241
标识
DOI:10.1093/bioinformatics/btv256
摘要

Abstract Motivation: Computational prediction of compound–protein interactions (CPIs) is of great importance for drug design and development, as genome-scale experimental validation of CPIs is not only time-consuming but also prohibitively expensive. With the availability of an increasing number of validated interactions, the performance of computational prediction approaches is severely impended by the lack of reliable negative CPI samples. A systematic method of screening reliable negative sample becomes critical to improving the performance of in silico prediction methods. Results: This article aims at building up a set of highly credible negative samples of CPIs via an in silico screening method. As most existing computational models assume that similar compounds are likely to interact with similar target proteins and achieve remarkable performance, it is rational to identify potential negative samples based on the converse negative proposition that the proteins dissimilar to every known/predicted target of a compound are not much likely to be targeted by the compound and vice versa. We integrated various resources, including chemical structures, chemical expression profiles and side effects of compounds, amino acid sequences, protein–protein interaction network and functional annotations of proteins, into a systematic screening framework. We first tested the screened negative samples on six classical classifiers, and all these classifiers achieved remarkably higher performance on our negative samples than on randomly generated negative samples for both human and Caenorhabditis elegans. We then verified the negative samples on three existing prediction models, including bipartite local model, Gaussian kernel profile and Bayesian matrix factorization, and found that the performances of these models are also significantly improved on the screened negative samples. Moreover, we validated the screened negative samples on a drug bioactivity dataset. Finally, we derived two sets of new interactions by training an support vector machine classifier on the positive interactions annotated in DrugBank and our screened negative interactions. The screened negative samples and the predicted interactions provide the research community with a useful resource for identifying new drug targets and a helpful supplement to the current curated compound–protein databases. Availability: Supplementary files are available at: http://admis.fudan.edu.cn/negative-cpi/. Contact: sgzhou@fudan.edu.cn Supplementary Information: Supplementary data are available at Bioinformatics online.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hui发布了新的文献求助10
1秒前
1秒前
yangjinru完成签到 ,获得积分10
1秒前
1秒前
2秒前
奥福发布了新的文献求助10
3秒前
3秒前
victor完成签到,获得积分10
6秒前
尘扬发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
迷路雨寒应助111采纳,获得20
7秒前
健壮熊猫发布了新的文献求助10
8秒前
mm发布了新的文献求助10
8秒前
psycho完成签到,获得积分10
8秒前
可爱的函函应助悲伤牛蛙采纳,获得10
8秒前
Orange应助hui采纳,获得10
8秒前
sakiecon完成签到,获得积分10
9秒前
yu风应助科研通管家采纳,获得10
9秒前
xlx应助科研通管家采纳,获得10
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
xlx应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得30
9秒前
共享精神应助科研通管家采纳,获得30
9秒前
9秒前
xlx应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
xlx应助科研通管家采纳,获得10
9秒前
香蕉诗蕊应助科研通管家采纳,获得10
9秒前
xlx应助科研通管家采纳,获得10
9秒前
烟花应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
xlx应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
10秒前
10秒前
yznfly给123的求助进行了留言
16秒前
shl完成签到,获得积分10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604088
求助须知:如何正确求助?哪些是违规求助? 4688919
关于积分的说明 14857074
捐赠科研通 4696569
什么是DOI,文献DOI怎么找? 2541150
邀请新用户注册赠送积分活动 1507314
关于科研通互助平台的介绍 1471851