亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improving compound–protein interaction prediction by building up highly credible negative samples

生物信息学 计算机科学 机器学习 计算生物学 贝叶斯概率 人工智能 集合(抽象数据类型) 数据挖掘 生物 遗传学 基因 程序设计语言
作者
Hui Liu,Jianjiang Sun,Jihong Guan,Jie Zheng,Shuigeng Zhou
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:31 (12): i221-i229 被引量:241
标识
DOI:10.1093/bioinformatics/btv256
摘要

Abstract Motivation: Computational prediction of compound–protein interactions (CPIs) is of great importance for drug design and development, as genome-scale experimental validation of CPIs is not only time-consuming but also prohibitively expensive. With the availability of an increasing number of validated interactions, the performance of computational prediction approaches is severely impended by the lack of reliable negative CPI samples. A systematic method of screening reliable negative sample becomes critical to improving the performance of in silico prediction methods. Results: This article aims at building up a set of highly credible negative samples of CPIs via an in silico screening method. As most existing computational models assume that similar compounds are likely to interact with similar target proteins and achieve remarkable performance, it is rational to identify potential negative samples based on the converse negative proposition that the proteins dissimilar to every known/predicted target of a compound are not much likely to be targeted by the compound and vice versa. We integrated various resources, including chemical structures, chemical expression profiles and side effects of compounds, amino acid sequences, protein–protein interaction network and functional annotations of proteins, into a systematic screening framework. We first tested the screened negative samples on six classical classifiers, and all these classifiers achieved remarkably higher performance on our negative samples than on randomly generated negative samples for both human and Caenorhabditis elegans. We then verified the negative samples on three existing prediction models, including bipartite local model, Gaussian kernel profile and Bayesian matrix factorization, and found that the performances of these models are also significantly improved on the screened negative samples. Moreover, we validated the screened negative samples on a drug bioactivity dataset. Finally, we derived two sets of new interactions by training an support vector machine classifier on the positive interactions annotated in DrugBank and our screened negative interactions. The screened negative samples and the predicted interactions provide the research community with a useful resource for identifying new drug targets and a helpful supplement to the current curated compound–protein databases. Availability: Supplementary files are available at: http://admis.fudan.edu.cn/negative-cpi/. Contact: sgzhou@fudan.edu.cn Supplementary Information: Supplementary data are available at Bioinformatics online.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
零知识发布了新的文献求助10
9秒前
粥粥大王完成签到,获得积分10
11秒前
粥粥大王发布了新的文献求助10
15秒前
652183758完成签到 ,获得积分10
20秒前
20秒前
所所应助柚子采纳,获得10
21秒前
酷波er应助啵子采纳,获得10
22秒前
丘比特应助曾业辉采纳,获得10
31秒前
TXZ06完成签到,获得积分10
36秒前
科研通AI6应助科研通管家采纳,获得10
39秒前
Lumi发布了新的文献求助10
39秒前
Lucas应助科研通管家采纳,获得10
39秒前
39秒前
英姑应助科研通管家采纳,获得10
39秒前
量子星尘发布了新的文献求助10
57秒前
1分钟前
苯苯完成签到,获得积分10
1分钟前
CipherSage应助苯苯采纳,获得10
1分钟前
科研通AI6.1应助洪子睿采纳,获得10
1分钟前
脑洞疼应助要减肥的冰姬采纳,获得30
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
啵子发布了新的文献求助10
1分钟前
2分钟前
literature发布了新的文献求助10
2分钟前
MchemG应助零知识采纳,获得10
2分钟前
yolo完成签到 ,获得积分10
2分钟前
iorpi完成签到,获得积分10
2分钟前
酷波er应助科研通管家采纳,获得10
2分钟前
NattyPoe应助科研通管家采纳,获得10
2分钟前
深情安青应助科研通管家采纳,获得10
2分钟前
literature完成签到,获得积分20
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
科研通AI6.1应助酥酥采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780249
求助须知:如何正确求助?哪些是违规求助? 5653879
关于积分的说明 15452923
捐赠科研通 4910998
什么是DOI,文献DOI怎么找? 2643189
邀请新用户注册赠送积分活动 1590828
关于科研通互助平台的介绍 1545336