Improving compound–protein interaction prediction by building up highly credible negative samples

生物信息学 计算机科学 机器学习 计算生物学 贝叶斯概率 人工智能 集合(抽象数据类型) 数据挖掘 生物 遗传学 基因 程序设计语言
作者
Hui Liu,Jianjiang Sun,Jihong Guan,Jie Zheng,Shuigeng Zhou
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:31 (12): i221-i229 被引量:241
标识
DOI:10.1093/bioinformatics/btv256
摘要

Abstract Motivation: Computational prediction of compound–protein interactions (CPIs) is of great importance for drug design and development, as genome-scale experimental validation of CPIs is not only time-consuming but also prohibitively expensive. With the availability of an increasing number of validated interactions, the performance of computational prediction approaches is severely impended by the lack of reliable negative CPI samples. A systematic method of screening reliable negative sample becomes critical to improving the performance of in silico prediction methods. Results: This article aims at building up a set of highly credible negative samples of CPIs via an in silico screening method. As most existing computational models assume that similar compounds are likely to interact with similar target proteins and achieve remarkable performance, it is rational to identify potential negative samples based on the converse negative proposition that the proteins dissimilar to every known/predicted target of a compound are not much likely to be targeted by the compound and vice versa. We integrated various resources, including chemical structures, chemical expression profiles and side effects of compounds, amino acid sequences, protein–protein interaction network and functional annotations of proteins, into a systematic screening framework. We first tested the screened negative samples on six classical classifiers, and all these classifiers achieved remarkably higher performance on our negative samples than on randomly generated negative samples for both human and Caenorhabditis elegans. We then verified the negative samples on three existing prediction models, including bipartite local model, Gaussian kernel profile and Bayesian matrix factorization, and found that the performances of these models are also significantly improved on the screened negative samples. Moreover, we validated the screened negative samples on a drug bioactivity dataset. Finally, we derived two sets of new interactions by training an support vector machine classifier on the positive interactions annotated in DrugBank and our screened negative interactions. The screened negative samples and the predicted interactions provide the research community with a useful resource for identifying new drug targets and a helpful supplement to the current curated compound–protein databases. Availability: Supplementary files are available at: http://admis.fudan.edu.cn/negative-cpi/. Contact: sgzhou@fudan.edu.cn Supplementary Information: Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孤独收割人完成签到,获得积分10
刚刚
星辰坠于海应助丰盛的煎饼采纳,获得666
2秒前
Upupcc发布了新的文献求助10
4秒前
4秒前
勤劳落雁发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
6秒前
6秒前
周周发布了新的文献求助10
6秒前
7秒前
科研通AI5应助解青文采纳,获得10
7秒前
科研通AI5应助魏伯安采纳,获得30
7秒前
nekoneko完成签到,获得积分10
10秒前
10秒前
11秒前
帅关发布了新的文献求助10
11秒前
yyyyy语言发布了新的文献求助10
12秒前
asheng98完成签到 ,获得积分10
13秒前
Chen完成签到,获得积分10
13秒前
慕青应助guajiguaji采纳,获得10
14秒前
圣晟胜发布了新的文献求助10
15秒前
15秒前
15秒前
不会失忆完成签到,获得积分10
17秒前
思源应助路边一颗小草采纳,获得10
17秒前
上官若男应助帅关采纳,获得10
18秒前
qin完成签到,获得积分10
19秒前
19秒前
流浪小诗人完成签到,获得积分10
19秒前
21秒前
知性的觅露完成签到,获得积分10
21秒前
朱湋帆完成签到 ,获得积分10
21秒前
devil发布了新的文献求助10
22秒前
乐乐应助咸鱼一号采纳,获得10
23秒前
25秒前
youjiang完成签到,获得积分10
25秒前
devil完成签到,获得积分10
25秒前
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528020
求助须知:如何正确求助?哪些是违规求助? 3108260
关于积分的说明 9288139
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540202
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849