清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Improving compound–protein interaction prediction by building up highly credible negative samples

生物信息学 计算机科学 机器学习 计算生物学 贝叶斯概率 人工智能 集合(抽象数据类型) 数据挖掘 生物 遗传学 基因 程序设计语言
作者
Hui Liu,Jianjiang Sun,Jihong Guan,Jie Zheng,Shuigeng Zhou
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:31 (12): i221-i229 被引量:241
标识
DOI:10.1093/bioinformatics/btv256
摘要

Abstract Motivation: Computational prediction of compound–protein interactions (CPIs) is of great importance for drug design and development, as genome-scale experimental validation of CPIs is not only time-consuming but also prohibitively expensive. With the availability of an increasing number of validated interactions, the performance of computational prediction approaches is severely impended by the lack of reliable negative CPI samples. A systematic method of screening reliable negative sample becomes critical to improving the performance of in silico prediction methods. Results: This article aims at building up a set of highly credible negative samples of CPIs via an in silico screening method. As most existing computational models assume that similar compounds are likely to interact with similar target proteins and achieve remarkable performance, it is rational to identify potential negative samples based on the converse negative proposition that the proteins dissimilar to every known/predicted target of a compound are not much likely to be targeted by the compound and vice versa. We integrated various resources, including chemical structures, chemical expression profiles and side effects of compounds, amino acid sequences, protein–protein interaction network and functional annotations of proteins, into a systematic screening framework. We first tested the screened negative samples on six classical classifiers, and all these classifiers achieved remarkably higher performance on our negative samples than on randomly generated negative samples for both human and Caenorhabditis elegans. We then verified the negative samples on three existing prediction models, including bipartite local model, Gaussian kernel profile and Bayesian matrix factorization, and found that the performances of these models are also significantly improved on the screened negative samples. Moreover, we validated the screened negative samples on a drug bioactivity dataset. Finally, we derived two sets of new interactions by training an support vector machine classifier on the positive interactions annotated in DrugBank and our screened negative interactions. The screened negative samples and the predicted interactions provide the research community with a useful resource for identifying new drug targets and a helpful supplement to the current curated compound–protein databases. Availability: Supplementary files are available at: http://admis.fudan.edu.cn/negative-cpi/. Contact: sgzhou@fudan.edu.cn Supplementary Information: Supplementary data are available at Bioinformatics online.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
山是山三十三完成签到 ,获得积分10
2秒前
李健的小迷弟应助汎影采纳,获得10
6秒前
田様应助汎影采纳,获得10
17秒前
CipherSage应助汎影采纳,获得10
28秒前
lucinda完成签到 ,获得积分10
32秒前
wanci应助汎影采纳,获得10
40秒前
大模型应助汎影采纳,获得10
50秒前
qazwsx应助无语的代真采纳,获得20
50秒前
海边的曼彻斯特完成签到 ,获得积分10
57秒前
Ava应助汎影采纳,获得10
59秒前
一自文又欠完成签到 ,获得积分10
1分钟前
可夫司机完成签到 ,获得积分10
1分钟前
Sunny完成签到,获得积分10
1分钟前
李健的小迷弟应助汎影采纳,获得10
1分钟前
乐观的忆枫完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
汎影完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
老仙发布了新的文献求助10
2分钟前
CC完成签到,获得积分10
2分钟前
老仙完成签到,获得积分10
2分钟前
科研通AI6应助阿辉采纳,获得10
2分钟前
迷茫的一代完成签到,获得积分10
2分钟前
2分钟前
Yportne完成签到,获得积分10
2分钟前
2分钟前
可爱的函函应助sy采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
3分钟前
充电宝应助安青兰采纳,获得10
3分钟前
sy发布了新的文献求助10
3分钟前
忆茶戏完成签到 ,获得积分10
3分钟前
3分钟前
Criminology34举报乔呀求助涉嫌违规
3分钟前
3分钟前
安青兰发布了新的文献求助10
3分钟前
Jasperlee完成签到 ,获得积分10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5764700
求助须知:如何正确求助?哪些是违规求助? 5553828
关于积分的说明 15406470
捐赠科研通 4899705
什么是DOI,文献DOI怎么找? 2635925
邀请新用户注册赠送积分活动 1584108
关于科研通互助平台的介绍 1539336