Three-Gene Prognostic Classifier for Early-Stage Non–Small-Cell Lung Cancer

医学 肿瘤科 内科学 一致性 肺癌 微阵列 危险系数 塔克曼 基因 基因表达 实时聚合酶链反应 生物 置信区间 生物化学
作者
Suzanne K. Lau,Paul C. Boutros,Melania Pintilie,Fiona Blackhall,Chang‐Qi Zhu,Dan Strumpf,Michael R. Johnston,Gail Darling,Shaf Keshavjee,Thomas K. Waddell,Ni Liu,Davina Lau,Linda Z. Penn,Frances A. Shepherd,Igor Jurišica,Sandy D. Der,Ming‐Sound Tsao
出处
期刊:Journal of Clinical Oncology [Lippincott Williams & Wilkins]
卷期号:25 (35): 5562-5569 被引量:258
标识
DOI:10.1200/jco.2007.12.0352
摘要

Several microarray studies have reported gene expression signatures that classify non-small-cell lung carcinoma (NSCLC) patients into different prognostic groups. However, the prognostic gene lists reported to date overlap poorly across studies, and few have been validated independently using more quantitative assay methods.The expression of 158 putative prognostic genes identified in previous microarray studies was analyzed by reverse transcription quantitative polymerase chain reaction in the tumors of 147 NSCLC patients. Concordance indices and risk scores were used to identify a stage-independent set of genes that could classify patients with significantly different prognoses.We have identified a three-gene classifier (STX1A, HIF1A, and CCR7) for overall survival (hazard ratio = 3.8; 95% CI, 1.7 to 8.2; P < .001). The classifier was also able to stratify stage I and II patients and further improved the predictive ability of clinical factors such as histology and tumor stage. The predictive value of this three-gene classifier was validated in two large independent microarray data sets from Harvard and Duke Universities.We have identified a new three-gene classifier that is independent of and improves on stage to stratify early-stage NSCLC patients with significantly different prognoses. This classifier may be tested further for its potential value to improve the selection of resected NSCLC patients in adjuvant therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助万嘉俊采纳,获得10
1秒前
科研通AI5应助Laus采纳,获得10
1秒前
酷波er应助nancy采纳,获得10
1秒前
2秒前
lcz发布了新的文献求助10
3秒前
畅快老虎完成签到,获得积分10
3秒前
5秒前
6秒前
znn123发布了新的文献求助10
7秒前
Gulu_完成签到 ,获得积分10
8秒前
卡卡发布了新的文献求助60
9秒前
传奇3应助木棉采纳,获得10
9秒前
阳光沛凝发布了新的文献求助10
9秒前
9秒前
11秒前
11秒前
小王发布了新的文献求助10
11秒前
迷路的蛋挞完成签到,获得积分10
12秒前
不安忆寒完成签到,获得积分10
13秒前
13秒前
所所应助lcz采纳,获得10
13秒前
123完成签到,获得积分10
13秒前
13秒前
烟花应助秋天不回来采纳,获得10
13秒前
SYLH应助帅帅中带点小坏采纳,获得30
14秒前
尛瞐慶成发布了新的文献求助10
14秒前
上官若男应助hena采纳,获得10
15秒前
znn123完成签到,获得积分20
15秒前
大海方间发布了新的文献求助10
16秒前
YuQingqing完成签到,获得积分10
17秒前
朴素太阳完成签到,获得积分20
17秒前
17秒前
fan发布了新的文献求助10
18秒前
万嘉俊发布了新的文献求助10
18秒前
不安忆寒发布了新的文献求助10
18秒前
dddy发布了新的文献求助10
19秒前
19秒前
惊奇先生1发布了新的文献求助10
21秒前
nancy发布了新的文献求助10
23秒前
bkagyin应助dddy采纳,获得10
24秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3745005
求助须知:如何正确求助?哪些是违规求助? 3287963
关于积分的说明 10056553
捐赠科研通 3004141
什么是DOI,文献DOI怎么找? 1649480
邀请新用户注册赠送积分活动 785342
科研通“疑难数据库(出版商)”最低求助积分说明 751049