锦标赛选拔
锦标赛
优势(遗传学)
选择(遗传算法)
约束(计算机辅助设计)
遗传算法
计算机科学
数学优化
算法
截断选择
人工智能
机器学习
数学
生物
遗传学
组合数学
几何学
基因
作者
Carlos A. Coello Coello,Efrén Mezura Montes
标识
DOI:10.1016/s1474-0346(02)00011-3
摘要
Abstract In this paper, we propose a dominance-based selection scheme to incorporate constraints into the fitness function of a genetic algorithm used for global optimization. The approach does not require the use of a penalty function and, unlike traditional evolutionary multiobjective optimization techniques, it does not require niching (or any other similar approach) to maintain diversity in the population. We validated the algorithm using several test functions taken from the specialized literature on evolutionary optimization. The results obtained indicate that the approach is a viable alternative to the traditional penalty function, mainly in engineering optimization problems.
科研通智能强力驱动
Strongly Powered by AbleSci AI