Image semantic segmentation based on improved DeepLabv3+ network and superpixel edge optimization

人工智能 计算机科学 模式识别(心理学) 图像分割 计算机视觉 像素 尺度空间分割 分割 基于分割的对象分类
作者
Guohua Liu,Zhipeng Chai
出处
期刊:Journal of Electronic Imaging [SPIE - International Society for Optical Engineering]
卷期号:31 (01) 被引量:2
标识
DOI:10.1117/1.jei.31.1.013011
摘要

Image semantic segmentation is a fundamental problem in the field of computer vision. Although the existing semantic segmentation model based on fully convolutional neural network continuously optimizes the segmentation effect, the inherent spatial invariance of the network still leads to cause the loss of object edge details. Moreover, most models use the pixel-by-pixel loss to optimize the target, and the dependencies between pixels are ignored. When facing objects with smaller spatial structures in the image, the segmentation result is not satisfactory. Based on the theory of relative entropy and mutual information, we propose an overall objective loss function that integrates pixel similarity and image structure similarity. It can better pay attention to the structure and detail information of small objects in space by modeling the dependency relationship between pixels. We use the DeepLabv3+ network based on group normalization, with the improved ResNet50 as the backbone. After that, considering the particular advantages of superpixel segmentation for object edges, we propose a superpixel edge optimization algorithm, which combines pixel-level semantic features and superpixel-level regional information to obtain the semantic segmentation results after edge optimization. Experiments on PASCAL VOC 2012 and cityscapes datasets show that the proposed method improves the performance of semantic segmentation and shows better results in small target structures and object edge details.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Zephyr完成签到,获得积分10
2秒前
JamesPei应助喻紫寒采纳,获得10
2秒前
victhr发布了新的文献求助10
3秒前
leeeeee完成签到,获得积分20
3秒前
3秒前
Lucas应助有星星的小路采纳,获得10
3秒前
消失在发布了新的文献求助10
4秒前
科研小狗完成签到 ,获得积分10
4秒前
fei完成签到,获得积分10
5秒前
wj完成签到 ,获得积分10
6秒前
6秒前
wwrjj完成签到,获得积分10
6秒前
Cissy完成签到,获得积分20
7秒前
7秒前
kk123完成签到,获得积分10
7秒前
冷艳吐司发布了新的文献求助30
10秒前
10秒前
wen关注了科研通微信公众号
11秒前
wwrjj发布了新的文献求助10
11秒前
畅快梦山发布了新的文献求助20
11秒前
善学以致用应助and999采纳,获得10
12秒前
12秒前
weiwenzuo发布了新的文献求助10
12秒前
昵称发布了新的文献求助10
13秒前
大旭完成签到,获得积分10
14秒前
共享精神应助liuzengzhang666采纳,获得10
15秒前
123456发布了新的文献求助10
15秒前
17秒前
George完成签到 ,获得积分10
18秒前
领导范儿应助tleeny采纳,获得10
19秒前
简单应助美丽访云采纳,获得20
19秒前
19秒前
cai2015完成签到,获得积分10
20秒前
qiluo123完成签到,获得积分10
20秒前
鱼鱼和石头完成签到,获得积分10
20秒前
dfsdgyu完成签到,获得积分10
20秒前
万能图书馆应助weiwenzuo采纳,获得10
21秒前
21秒前
勤恳易真发布了新的文献求助10
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304627
求助须知:如何正确求助?哪些是违规求助? 2938626
关于积分的说明 8489303
捐赠科研通 2613106
什么是DOI,文献DOI怎么找? 1427111
科研通“疑难数据库(出版商)”最低求助积分说明 662895
邀请新用户注册赠送积分活动 647487