线性化
计算机科学
电力系统
功率流
电压
回归
功率(物理)
试验数据
控制理论(社会学)
人工智能
工程类
数学
控制(管理)
统计
非线性系统
电气工程
物理
量子力学
程序设计语言
作者
Gopal K. Jain,Suraj Sidar,Deep Kiran
标识
DOI:10.1109/icps52420.2021.9670398
摘要
The knowledge of essential parameters for a power network is necessary for many applications. Evaluating them using traditional methods is computationally intensive and may fail to consider all external factors affecting the system. Therefore, a machine learning-based approach is proposed that predicts these parameters in this paper. The datasets are prepared for IEEE standard test systems and extended for their training and testing. This method can prove helpful to find all the unknown parameters for a power system, especially voltage magnitude and voltage angle, with significantly less error.
科研通智能强力驱动
Strongly Powered by AbleSci AI