Automated Atrial Fibrillation Classification Based on Denoising Stacked Autoencoder and Optimized Deep Network

自编码 卷积神经网络 人工智能 深度学习 计算机科学 模式识别(心理学) 人工神经网络 灵敏度(控制系统) 降噪 噪音(视频) 工程类 图像(数学) 电子工程
作者
Rajesh Singh,Ambalika Sharma,Shreesha Maiya
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2202.05177
摘要

The incidences of atrial fibrillation (AFib) are increasing at a daunting rate worldwide. For the early detection of the risk of AFib, we have developed an automatic detection system based on deep neural networks. For achieving better classification, it is mandatory to have good pre-processing of physiological signals. Keeping this in mind, we have proposed a two-fold study. First, an end-to-end model is proposed to denoise the electrocardiogram signals using denoising autoencoders (DAE). To achieve denoising, we have used three networks including, convolutional neural network (CNN), dense neural network (DNN), and recurrent neural networks (RNN). Compared the three models and CNN based DAE performance is found to be better than the other two. Therefore, the signals denoised by the CNN based DAE were used to train the deep neural networks for classification. Three neural networks' performance has been evaluated using accuracy, specificity, sensitivity, and signal to noise ratio (SNR) as the evaluation criteria. The proposed end-to-end deep learning model for detecting atrial fibrillation in this study has achieved an accuracy rate of 99.20%, a specificity of 99.50%, a sensitivity of 99.50%, and a true positive rate of 99.00%. The average accuracy of the algorithms we compared is 96.26%, and our algorithm's accuracy is 3.2% higher than this average of the other algorithms. The CNN classification network performed better as compared to the other two. Additionally, the model is computationally efficient for real-time applications, and it takes approx 1.3 seconds to process 24 hours ECG signal. The proposed model was also tested on unseen dataset with different proportions of arrhythmias to examine the model's robustness, which resulted in 99.10% of recall and 98.50% of precision.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111完成签到,获得积分10
刚刚
刘佳欣发布了新的文献求助10
1秒前
慕慕完成签到 ,获得积分10
1秒前
薛乎虚完成签到 ,获得积分10
1秒前
852应助1111采纳,获得10
2秒前
YY完成签到,获得积分10
2秒前
CRANE完成签到 ,获得积分10
4秒前
NONO完成签到,获得积分20
4秒前
简单发布了新的文献求助10
6秒前
啊哦完成签到 ,获得积分10
6秒前
7秒前
7秒前
Orange应助zhengly23采纳,获得10
7秒前
Rez完成签到,获得积分10
9秒前
拼搏太英完成签到,获得积分10
11秒前
12秒前
wu完成签到 ,获得积分20
13秒前
Rabbit完成签到,获得积分10
13秒前
江楠发布了新的文献求助10
13秒前
白色花海完成签到,获得积分10
14秒前
脑洞疼应助杨旭采纳,获得10
16秒前
ranj发布了新的文献求助10
16秒前
殷启维发布了新的文献求助10
17秒前
Owen应助简单采纳,获得50
17秒前
丘比特应助Rabbit采纳,获得10
17秒前
17秒前
无私的蛋挞完成签到,获得积分10
20秒前
眼睛大的傲菡完成签到,获得积分10
20秒前
AAAAA完成签到 ,获得积分10
23秒前
Shirly完成签到,获得积分10
24秒前
24秒前
隐形曼青应助科研通管家采纳,获得10
24秒前
今后应助科研通管家采纳,获得10
24秒前
李爱国应助科研通管家采纳,获得10
24秒前
24秒前
敬老院N号应助科研通管家采纳,获得30
24秒前
充电宝应助科研通管家采纳,获得10
24秒前
领导范儿应助科研通管家采纳,获得10
24秒前
Ava应助科研通管家采纳,获得10
24秒前
搜集达人应助科研通管家采纳,获得10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965857
求助须知:如何正确求助?哪些是违规求助? 3511158
关于积分的说明 11156654
捐赠科研通 3245772
什么是DOI,文献DOI怎么找? 1793118
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804268