亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automated Atrial Fibrillation Classification Based on Denoising Stacked Autoencoder and Optimized Deep Network

自编码 卷积神经网络 人工智能 深度学习 计算机科学 模式识别(心理学) 人工神经网络 灵敏度(控制系统) 降噪 噪音(视频) 工程类 图像(数学) 电子工程
作者
Rajesh Singh,Ambalika Sharma,Shreesha Maiya
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2202.05177
摘要

The incidences of atrial fibrillation (AFib) are increasing at a daunting rate worldwide. For the early detection of the risk of AFib, we have developed an automatic detection system based on deep neural networks. For achieving better classification, it is mandatory to have good pre-processing of physiological signals. Keeping this in mind, we have proposed a two-fold study. First, an end-to-end model is proposed to denoise the electrocardiogram signals using denoising autoencoders (DAE). To achieve denoising, we have used three networks including, convolutional neural network (CNN), dense neural network (DNN), and recurrent neural networks (RNN). Compared the three models and CNN based DAE performance is found to be better than the other two. Therefore, the signals denoised by the CNN based DAE were used to train the deep neural networks for classification. Three neural networks' performance has been evaluated using accuracy, specificity, sensitivity, and signal to noise ratio (SNR) as the evaluation criteria. The proposed end-to-end deep learning model for detecting atrial fibrillation in this study has achieved an accuracy rate of 99.20%, a specificity of 99.50%, a sensitivity of 99.50%, and a true positive rate of 99.00%. The average accuracy of the algorithms we compared is 96.26%, and our algorithm's accuracy is 3.2% higher than this average of the other algorithms. The CNN classification network performed better as compared to the other two. Additionally, the model is computationally efficient for real-time applications, and it takes approx 1.3 seconds to process 24 hours ECG signal. The proposed model was also tested on unseen dataset with different proportions of arrhythmias to examine the model's robustness, which resulted in 99.10% of recall and 98.50% of precision.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
12秒前
25秒前
zbzfp发布了新的文献求助10
29秒前
38秒前
39秒前
40秒前
香蕉觅云应助zbzfp采纳,获得10
40秒前
王加冕完成签到 ,获得积分10
52秒前
时尚丹寒完成签到 ,获得积分10
1分钟前
烂漫的芫完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Jasper应助科研通管家采纳,获得10
1分钟前
1分钟前
迷途小书童完成签到,获得积分10
1分钟前
1分钟前
科目三应助Jello采纳,获得10
2分钟前
131949发布了新的文献求助10
2分钟前
脑洞疼应助131949采纳,获得10
2分钟前
lele完成签到 ,获得积分10
2分钟前
2分钟前
huayu发布了新的文献求助10
2分钟前
2分钟前
知性的剑身完成签到,获得积分10
2分钟前
2分钟前
2分钟前
学生信的大叔完成签到,获得积分10
2分钟前
云轰2857发布了新的文献求助10
2分钟前
进步面包笑哈哈应助huayu采纳,获得30
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
哭泣朝雪发布了新的文献求助10
2分钟前
2分钟前
上官若男应助云轰2857采纳,获得10
2分钟前
吴子鹏发布了新的文献求助10
2分钟前
yeeming应助Chocolat_Chaud采纳,获得10
2分钟前
云轰2857完成签到,获得积分10
3分钟前
G13完成签到,获得积分20
3分钟前
田様应助吴子鹏采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509482
求助须知:如何正确求助?哪些是违规求助? 4604372
关于积分的说明 14489686
捐赠科研通 4539145
什么是DOI,文献DOI怎么找? 2487317
邀请新用户注册赠送积分活动 1469770
关于科研通互助平台的介绍 1442014