Automated Atrial Fibrillation Classification Based on Denoising Stacked Autoencoder and Optimized Deep Network

自编码 卷积神经网络 人工智能 深度学习 计算机科学 模式识别(心理学) 人工神经网络 灵敏度(控制系统) 降噪 噪音(视频) 工程类 图像(数学) 电子工程
作者
Rajesh Singh,Ambalika Sharma,Shreesha Maiya
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2202.05177
摘要

The incidences of atrial fibrillation (AFib) are increasing at a daunting rate worldwide. For the early detection of the risk of AFib, we have developed an automatic detection system based on deep neural networks. For achieving better classification, it is mandatory to have good pre-processing of physiological signals. Keeping this in mind, we have proposed a two-fold study. First, an end-to-end model is proposed to denoise the electrocardiogram signals using denoising autoencoders (DAE). To achieve denoising, we have used three networks including, convolutional neural network (CNN), dense neural network (DNN), and recurrent neural networks (RNN). Compared the three models and CNN based DAE performance is found to be better than the other two. Therefore, the signals denoised by the CNN based DAE were used to train the deep neural networks for classification. Three neural networks' performance has been evaluated using accuracy, specificity, sensitivity, and signal to noise ratio (SNR) as the evaluation criteria. The proposed end-to-end deep learning model for detecting atrial fibrillation in this study has achieved an accuracy rate of 99.20%, a specificity of 99.50%, a sensitivity of 99.50%, and a true positive rate of 99.00%. The average accuracy of the algorithms we compared is 96.26%, and our algorithm's accuracy is 3.2% higher than this average of the other algorithms. The CNN classification network performed better as compared to the other two. Additionally, the model is computationally efficient for real-time applications, and it takes approx 1.3 seconds to process 24 hours ECG signal. The proposed model was also tested on unseen dataset with different proportions of arrhythmias to examine the model's robustness, which resulted in 99.10% of recall and 98.50% of precision.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shimenwanzhao完成签到 ,获得积分0
1秒前
lllwww完成签到 ,获得积分10
1秒前
2秒前
一帆锋顺完成签到,获得积分10
3秒前
starry完成签到 ,获得积分10
4秒前
7秒前
小凯应助tantantantan采纳,获得10
7秒前
渣渣XM发布了新的文献求助10
8秒前
revew666完成签到,获得积分10
8秒前
Yogita完成签到,获得积分10
9秒前
鹿芩完成签到,获得积分10
10秒前
宁学者完成签到,获得积分10
13秒前
HP完成签到,获得积分10
14秒前
小将完成签到 ,获得积分10
14秒前
15秒前
planA完成签到,获得积分10
16秒前
Denvir完成签到 ,获得积分10
16秒前
早起完成签到,获得积分10
17秒前
我是雅婷发布了新的文献求助10
18秒前
Jasper应助宁学者采纳,获得10
18秒前
今后应助豆⑧采纳,获得10
19秒前
shenzhou9完成签到,获得积分10
19秒前
科研通AI2S应助渣渣XM采纳,获得10
20秒前
20秒前
fengfeng完成签到 ,获得积分10
22秒前
WX完成签到,获得积分10
23秒前
孟伟发布了新的文献求助10
25秒前
山月完成签到 ,获得积分10
29秒前
30秒前
夕瑶发布了新的文献求助10
31秒前
学不动完成签到 ,获得积分10
34秒前
豆⑧发布了新的文献求助10
34秒前
36秒前
小凯应助心随以动采纳,获得10
38秒前
从容雨筠完成签到,获得积分10
38秒前
39秒前
豆⑧完成签到,获得积分10
40秒前
坦率小天鹅完成签到,获得积分10
40秒前
41秒前
李爱国应助沐杨采纳,获得10
42秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162560
求助须知:如何正确求助?哪些是违规求助? 2813411
关于积分的说明 7900327
捐赠科研通 2472992
什么是DOI,文献DOI怎么找? 1316626
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602175