Deep Learning-Based Pain Classifier Based on the Facial Expression in Critically Ill Patients

卷积神经网络 人工智能 分类器(UML) 深度学习 疼痛评估 剪辑 医学 病危 面部表情 计算机科学 模式识别(心理学) 物理疗法 疼痛管理 内科学
作者
Chieh‐Liang Wu,Shufang Liu,Tian–Li Yu,Sou‐Jen Shih,Chih-Hung Chang,Shih-Fang Yang Mao,Yueh-Se Li,Hui-Jiun Chen,Chia‐Chen Chen,Wen‐Cheng Chao
出处
期刊:Frontiers in Medicine [Frontiers Media]
卷期号:9 被引量:19
标识
DOI:10.3389/fmed.2022.851690
摘要

Pain assessment based on facial expressions is an essential issue in critically ill patients, but an automated assessment tool is still lacking. We conducted this prospective study to establish the deep learning-based pain classifier based on facial expressions.We enrolled critically ill patients during 2020-2021 at a tertiary hospital in central Taiwan and recorded video clips with labeled pain scores based on facial expressions, such as relaxed (0), tense (1), and grimacing (2). We established both image- and video-based pain classifiers through using convolutional neural network (CNN) models, such as Resnet34, VGG16, and InceptionV1 and bidirectional long short-term memory networks (BiLSTM). The performance of classifiers in the test dataset was determined by accuracy, sensitivity, and F1-score.A total of 63 participants with 746 video clips were eligible for analysis. The accuracy of using Resnet34 in the polychromous image-based classifier for pain scores 0, 1, 2 was merely 0.5589, and the accuracy of dichotomous pain classifiers between 0 vs. 1/2 and 0 vs. 2 were 0.7668 and 0.8593, respectively. Similar accuracy of image-based pain classifier was found using VGG16 and InceptionV1. The accuracy of the video-based pain classifier to classify 0 vs. 1/2 and 0 vs. 2 was approximately 0.81 and 0.88, respectively. We further tested the performance of established classifiers without reference, mimicking clinical scenarios with a new patient, and found the performance remained high.The present study demonstrates the practical application of deep learning-based automated pain assessment in critically ill patients, and more studies are warranted to validate our findings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lm应助七月流火采纳,获得10
刚刚
哈哈哈发布了新的文献求助10
2秒前
luojimao完成签到,获得积分10
2秒前
2秒前
李健的小迷弟应助叶子采纳,获得10
3秒前
杰杰发布了新的文献求助10
4秒前
科目三应助misalia采纳,获得10
5秒前
zy发布了新的文献求助10
5秒前
5秒前
6秒前
CipherSage应助阿落落呀采纳,获得10
6秒前
6秒前
阿克图尔斯·蒙斯克完成签到,获得积分10
7秒前
8秒前
没有昵称发布了新的文献求助10
10秒前
灵巧的惜灵应助寂寞的灵采纳,获得10
12秒前
13秒前
彭于晏应助监督導部采纳,获得10
13秒前
所所应助小河采纳,获得20
13秒前
阳光完成签到,获得积分10
14秒前
烟花应助李y梅子采纳,获得10
14秒前
15秒前
全若之完成签到,获得积分20
15秒前
天天快乐应助安蓝采纳,获得10
15秒前
15秒前
懒羊羊发布了新的文献求助10
16秒前
奇拉维特完成签到 ,获得积分10
16秒前
yuyukeke完成签到,获得积分10
17秒前
huh完成签到,获得积分10
18秒前
聪慧代天发布了新的文献求助10
19秒前
19秒前
栗栗子完成签到,获得积分10
19秒前
lllll发布了新的文献求助10
20秒前
Lm完成签到,获得积分10
21秒前
努力哥完成签到,获得积分10
22秒前
星点点发布了新的文献求助10
22秒前
lay完成签到,获得积分10
23秒前
23秒前
liuxiner发布了新的文献求助10
24秒前
有且仅有发布了新的文献求助10
24秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4011327
求助须知:如何正确求助?哪些是违规求助? 3551014
关于积分的说明 11307268
捐赠科研通 3285224
什么是DOI,文献DOI怎么找? 1811001
邀请新用户注册赠送积分活动 886685
科研通“疑难数据库(出版商)”最低求助积分说明 811597