Deep Learning-Based Pain Classifier Based on the Facial Expression in Critically Ill Patients

卷积神经网络 人工智能 分类器(UML) 深度学习 疼痛评估 剪辑 医学 病危 面部表情 计算机科学 模式识别(心理学) 物理疗法 疼痛管理 内科学
作者
Chieh‐Liang Wu,Shufang Liu,Tian–Li Yu,Sou‐Jen Shih,Chih-Hung Chang,Shih-Fang Yang Mao,Yueh-Se Li,Hui-Jiun Chen,Chia‐Chen Chen,Wen‐Cheng Chao
出处
期刊:Frontiers in Medicine [Frontiers Media SA]
卷期号:9 被引量:19
标识
DOI:10.3389/fmed.2022.851690
摘要

Pain assessment based on facial expressions is an essential issue in critically ill patients, but an automated assessment tool is still lacking. We conducted this prospective study to establish the deep learning-based pain classifier based on facial expressions.We enrolled critically ill patients during 2020-2021 at a tertiary hospital in central Taiwan and recorded video clips with labeled pain scores based on facial expressions, such as relaxed (0), tense (1), and grimacing (2). We established both image- and video-based pain classifiers through using convolutional neural network (CNN) models, such as Resnet34, VGG16, and InceptionV1 and bidirectional long short-term memory networks (BiLSTM). The performance of classifiers in the test dataset was determined by accuracy, sensitivity, and F1-score.A total of 63 participants with 746 video clips were eligible for analysis. The accuracy of using Resnet34 in the polychromous image-based classifier for pain scores 0, 1, 2 was merely 0.5589, and the accuracy of dichotomous pain classifiers between 0 vs. 1/2 and 0 vs. 2 were 0.7668 and 0.8593, respectively. Similar accuracy of image-based pain classifier was found using VGG16 and InceptionV1. The accuracy of the video-based pain classifier to classify 0 vs. 1/2 and 0 vs. 2 was approximately 0.81 and 0.88, respectively. We further tested the performance of established classifiers without reference, mimicking clinical scenarios with a new patient, and found the performance remained high.The present study demonstrates the practical application of deep learning-based automated pain assessment in critically ill patients, and more studies are warranted to validate our findings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
跳跃尔琴发布了新的文献求助10
1秒前
amiaomiao完成签到,获得积分10
1秒前
云_123发布了新的文献求助10
2秒前
Hello应助少年珮采纳,获得10
2秒前
3秒前
3秒前
3秒前
3秒前
听风完成签到 ,获得积分10
5秒前
5秒前
三年二班索隆完成签到 ,获得积分10
6秒前
似水流年发布了新的文献求助10
7秒前
长孙兰溪发布了新的文献求助10
7秒前
Nina发布了新的文献求助10
7秒前
8秒前
上官若男应助xxx1234采纳,获得10
9秒前
9秒前
ada发布了新的文献求助10
9秒前
宏宏完成签到,获得积分10
10秒前
咿咿呀呀发布了新的文献求助10
10秒前
打打应助方聪采纳,获得10
11秒前
Ava应助专一的白凝采纳,获得10
11秒前
无花果应助枫枫829采纳,获得10
14秒前
louziqi发布了新的文献求助10
15秒前
念念完成签到,获得积分10
16秒前
少年珮完成签到,获得积分10
16秒前
包容的狗完成签到 ,获得积分10
17秒前
zfy应助liuzengzhang666采纳,获得10
18秒前
哦吼发布了新的文献求助20
19秒前
GL发布了新的文献求助20
20秒前
20秒前
慕青应助Nina采纳,获得10
21秒前
摸猪头发布了新的文献求助10
21秒前
英姑应助736550205采纳,获得50
22秒前
健康的修洁完成签到 ,获得积分10
23秒前
yan儿发布了新的文献求助10
25秒前
25秒前
xxx1234发布了新的文献求助10
27秒前
斯文败类应助ada采纳,获得10
28秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134819
求助须知:如何正确求助?哪些是违规求助? 2785712
关于积分的说明 7773883
捐赠科研通 2441585
什么是DOI,文献DOI怎么找? 1298006
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825