Dynamic demand-driven bike station clustering

共享单车 聚类分析 水准点(测量) 计算机科学 TRIPS体系结构 运输工程 星团(航天器) 交通拥挤
作者
Yi Jia Wang,Yong-Hong Kuo,George Q. Huang,Weihua Gu,Yaohua Hu
出处
期刊:Transportation Research Part E-logistics and Transportation Review [Elsevier]
卷期号:160: 102656-102656 被引量:2
标识
DOI:10.1016/j.tre.2022.102656
摘要

As an eco-friendly transportation option, bike-sharing systems have become increasingly popular because of their low costs and contributions to reducing traffic congestion and emissions generated by vehicles. Due to the availability of bikes and the geographically varied bike flows, shared-bike operators have to reposition bikes throughout the day in a large and dynamic shared-bike network. Most of the existing studies cluster bike stations by their geographical locations to form smaller sub-networks for more efficient optimization of bike-repositioning operations. This study develops a new methodological framework with a demand-driven approach to clustering bike stations in bike-sharing systems. Our approach captures spatiotemporal patterns of user demands and can enhance the efficiency of bike-repositioning operations. A directed graph is constructed to represent the bike-sharing system, whose vertices are bike stations and arcs represent bike flows, weighted by the number of trips between the bike stations. A novel demand-driven algorithm based on community detection is developed to solve the clustering problem. Numerical experiments are conducted with the data captured from the world’s largest bike-sharing system, consisting of nearly 3000 stations. The results show that, with CPLEX solutions as the benchmark, the proposed methodology provides high-quality solutions with shorter computing times. The clusters identified by our methodology are effective for bike repositioning, demonstrated by the balance of bike flows among clusters and geographic proximity of bike stations in each cluster The comparison between clusters found in different hours indicates that bike sharing is a short-distance transportation mode. One of the key conclusions from the computational study is that clustering bike stations by bike flow in the network not only enhances the efficiency of bike-repositioning operations but also preserves the geographic characteristics of clusters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暮城完成签到,获得积分10
刚刚
刚刚
刚刚
刚刚
燕一刀发布了新的文献求助10
刚刚
Hqing完成签到 ,获得积分10
1秒前
Watson完成签到,获得积分10
1秒前
benny279发布了新的文献求助30
1秒前
开朗依霜发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
3秒前
月亮发布了新的文献求助10
4秒前
5秒前
5秒前
希望天下0贩的0应助xy820采纳,获得10
5秒前
keke发布了新的文献求助10
5秒前
issmoon关注了科研通微信公众号
5秒前
dummer发布了新的文献求助10
5秒前
红星路吃饼子的派大星完成签到 ,获得积分10
6秒前
heady完成签到,获得积分10
7秒前
8秒前
小二郎应助ccc采纳,获得10
8秒前
d22110652发布了新的文献求助10
8秒前
笑靥发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
9秒前
小王同学完成签到 ,获得积分10
10秒前
10秒前
默默问晴发布了新的文献求助10
10秒前
干秋白发布了新的文献求助10
11秒前
11秒前
番豆完成签到,获得积分10
12秒前
英姑应助汎影采纳,获得10
12秒前
12秒前
13秒前
YBW发布了新的文献求助10
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3467902
求助须知:如何正确求助?哪些是违规求助? 3060792
关于积分的说明 9073352
捐赠科研通 2751341
什么是DOI,文献DOI怎么找? 1509629
科研通“疑难数据库(出版商)”最低求助积分说明 697393
邀请新用户注册赠送积分活动 697393