作者
Kaikai Wen,Hui Tan,Qian Peng,Hao Chen,Han Ma,Lu Wang,Aidong Peng,Qinqin Shi,Xiaodong Cai,Hui Huang
摘要
Second near-infrared (NIR-II) window type-I photosensitizers have intrinsic advantages in photodynamic/photothermal therapy (PDT/PTT) of some malignant tumors with deep infiltration, large size, complicated location, and low possibility of surgery/radiotherapy. Herein, three chalcogen-element-based donor-acceptor-type semiconducting polymers (poly[2,2″-((E)-4,4″-bis(2-octyldodecyl)-[6,6″-bithieno[3,2-b]pyrrolylidene]-5,5″(4H,4″H)-dione)-alt-2,5-(thiophene)] (PTS), poly[2,2″-((E)-4,4″-bis(2-octyldodecyl)-[6,6″-bithieno[3,2-b]pyrrolylidene]-5,5″(4H,4″H)-dione)-alt-2,5-(selenophene)] (PTSe), and poly[2,2″-((E)-4,4″-bis(2-octyldodecyl)-[6,6″-bithieno[3,2-b]pyrrolylidene]-5,5″(4H,4'H)-dione)-alt-2,5-(tellurophene)] (PTTe)) are synthesized and fully characterized, demonstrating strong absorption in the NIR-II region. Upon adjusting the chalcogen elements, the intramolecular charge-transfer characteristics and the heavy-atom effect are tuned to enhance the intersystem crossing rate, improving the photodynamic effect. Moreover, the energy levels and Gibbs free energies are tuned to facilitate the type-I photodynamic process. As a result, PTTe nanoparticles (NPs) produce superoxide anion radicals (O2•- ) more efficiently and demonstrate higher photothermal conversion efficiency than PTS and PTSe NPs upon NIR-II (1064 nm) laser irradiation, exhibiting unprecedented NIR-II type-I PDT/PTT performance in vitro and in vivo. This work provides ideas for achieving high-performance NIR-II type-I PDT/PTT semiconducting polymers for hypoxic oncotherapy.