Spatiotemporal variations of carbon dioxide (CO2) at Urban neighborhood scale: Characterization of distribution patterns and contributions of emission sources

环境科学 背景(考古学) 二氧化碳 温室气体 中午 大气科学 碳纤维 比例(比率) 自然地理学 气象学 地理 化学 地图学 生态学 地质学 数学 考古 有机化学 复合数 生物 算法
作者
Xing-Hang Zhu,Kang Lu,Zhong‐Ren Peng,Hong-di He,Shuang Xu
出处
期刊:Sustainable Cities and Society [Elsevier]
卷期号:78: 103646-103646 被引量:26
标识
DOI:10.1016/j.scs.2021.103646
摘要

The gradual increase in atmospheric carbon dioxide (CO2) concentrations has attracted worldwide attention for its strong relationships with global climate change. Considerable efforts are being undertaken to characterize spatiotemporal variations of CO2 at a city, regional and national level, aiming at providing pipelines for carbon emission reduction. However, there is scarce knowledge of how CO2 at the urban neighborhood scale is produced and distributed in the context of time and space, which is useful to accurately target source contributions from the ground up and reduce carbon emissions at a fine-grained scale. In this study, mobile measurements of CO2 concentrations were made in a 2 km × 2 km urban area covering different land use types to separately characterize the spatiotemporal distribution patterns of CO2 in roadside, residential and green space areas. The results show that CO2 concentrations in the late afternoon (Local time, UTC+8, LT 17–18) were higher than those at noon (LT 11–12), and that CO2 concentrations in winter were higher than those in summer. The roadside areas exhibited the highest CO2 concentration level of 452.66 ± 20.59 ppm, followed by residential areas (436.34 ± 27.02 ppm) and green space areas (428.98 ± 20.49 ppm). The result indicates that traffic sources brought more carbon emissions and contributed to a significant increase in CO2 concentrations, while urban greenery caused more carbon absorptions and reduced CO2 concentrations. This can be further confirmed by the observations that CO2 concentrations in the roadside neighborhood showed a strong positive correlation (R2 = 0.86) with ambient traffic flow. Then two machine learning models, i.e., Random Forest and eXtreme Gradient Boost, were developed to quantify the individual contribution from different carbon emission sources to the CO2 distributions, including traffic flow, greening rate, and domestic energy consumption. The results show that traffic-related carbon emissions were the most important influencing factor and accounted for approximately 60% of ambient CO2 concentrations, followed by greening rate (20%) and domestic energy consumption (10%). These findings can provide insights into spatiotemporal distributions and source contributions of CO2 in urban neighborhoods and show huge potentials for reducing urban carbon emissions at a fine-grained scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
江瀛完成签到,获得积分10
3秒前
3秒前
颜陌完成签到,获得积分10
4秒前
菜菜小卷发布了新的文献求助10
7秒前
楼沁发布了新的文献求助10
7秒前
遥远的尧应助姚琳采纳,获得10
10秒前
华仔应助颜陌采纳,获得10
11秒前
11秒前
lsq108完成签到,获得积分10
13秒前
sally完成签到 ,获得积分10
13秒前
传奇3应助楼沁采纳,获得10
13秒前
14秒前
雪山飞龙发布了新的文献求助10
14秒前
freddyyuu完成签到 ,获得积分10
15秒前
lsq108发布了新的文献求助10
15秒前
打打应助小王同学采纳,获得10
16秒前
17秒前
tttt完成签到 ,获得积分10
17秒前
阿强哥20241101完成签到,获得积分10
21秒前
乐乐应助泡泡汽水采纳,获得10
21秒前
24秒前
今后应助小王哪跑采纳,获得10
24秒前
852应助科研通管家采纳,获得10
25秒前
所所应助科研通管家采纳,获得10
25秒前
充电宝应助科研通管家采纳,获得10
25秒前
starofjlu应助科研通管家采纳,获得20
25秒前
NexusExplorer应助科研通管家采纳,获得30
25秒前
27秒前
27秒前
sxr发布了新的文献求助10
29秒前
31秒前
CodeCraft应助努力采纳,获得30
31秒前
MY20240406发布了新的文献求助10
32秒前
姚琳完成签到,获得积分10
33秒前
啥时候吃火锅完成签到 ,获得积分0
35秒前
屁颠屁颠_狼完成签到 ,获得积分0
36秒前
WEDNES完成签到,获得积分10
42秒前
我是老大应助文艺的冬卉采纳,获得30
43秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159827
求助须知:如何正确求助?哪些是违规求助? 2810777
关于积分的说明 7889328
捐赠科研通 2469852
什么是DOI,文献DOI怎么找? 1315126
科研通“疑难数据库(出版商)”最低求助积分说明 630742
版权声明 602012