Spatiotemporal variations of carbon dioxide (CO2) at Urban neighborhood scale: Characterization of distribution patterns and contributions of emission sources

环境科学 背景(考古学) 二氧化碳 温室气体 中午 大气科学 碳纤维 比例(比率) 自然地理学 气象学 地理 化学 地图学 生态学 地质学 数学 考古 有机化学 复合数 生物 算法
作者
Xing-Hang Zhu,Kang Lu,Zhong‐Ren Peng,Hong-di He,Shuang Xu
出处
期刊:Sustainable Cities and Society [Elsevier BV]
卷期号:78: 103646-103646 被引量:26
标识
DOI:10.1016/j.scs.2021.103646
摘要

The gradual increase in atmospheric carbon dioxide (CO2) concentrations has attracted worldwide attention for its strong relationships with global climate change. Considerable efforts are being undertaken to characterize spatiotemporal variations of CO2 at a city, regional and national level, aiming at providing pipelines for carbon emission reduction. However, there is scarce knowledge of how CO2 at the urban neighborhood scale is produced and distributed in the context of time and space, which is useful to accurately target source contributions from the ground up and reduce carbon emissions at a fine-grained scale. In this study, mobile measurements of CO2 concentrations were made in a 2 km × 2 km urban area covering different land use types to separately characterize the spatiotemporal distribution patterns of CO2 in roadside, residential and green space areas. The results show that CO2 concentrations in the late afternoon (Local time, UTC+8, LT 17–18) were higher than those at noon (LT 11–12), and that CO2 concentrations in winter were higher than those in summer. The roadside areas exhibited the highest CO2 concentration level of 452.66 ± 20.59 ppm, followed by residential areas (436.34 ± 27.02 ppm) and green space areas (428.98 ± 20.49 ppm). The result indicates that traffic sources brought more carbon emissions and contributed to a significant increase in CO2 concentrations, while urban greenery caused more carbon absorptions and reduced CO2 concentrations. This can be further confirmed by the observations that CO2 concentrations in the roadside neighborhood showed a strong positive correlation (R2 = 0.86) with ambient traffic flow. Then two machine learning models, i.e., Random Forest and eXtreme Gradient Boost, were developed to quantify the individual contribution from different carbon emission sources to the CO2 distributions, including traffic flow, greening rate, and domestic energy consumption. The results show that traffic-related carbon emissions were the most important influencing factor and accounted for approximately 60% of ambient CO2 concentrations, followed by greening rate (20%) and domestic energy consumption (10%). These findings can provide insights into spatiotemporal distributions and source contributions of CO2 in urban neighborhoods and show huge potentials for reducing urban carbon emissions at a fine-grained scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
恍如隔世完成签到,获得积分10
刚刚
1秒前
FL应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
大模型应助犹豫觅翠采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
湖里发布了新的文献求助10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
3秒前
缓慢煎蛋应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
MingqingFang完成签到,获得积分10
3秒前
阳光的衫完成签到,获得积分10
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
青苔完成签到 ,获得积分10
7秒前
kook发布了新的文献求助10
7秒前
JamesPei应助囙氼仚采纳,获得10
7秒前
王图完成签到 ,获得积分10
10秒前
10秒前
大蜥蜴完成签到,获得积分10
10秒前
情怀应助湖里采纳,获得10
10秒前
量子星尘发布了新的文献求助10
13秒前
orixero应助Sue采纳,获得30
14秒前
15秒前
16秒前
ATLI应助简单采纳,获得20
17秒前
。?。发布了新的文献求助10
20秒前
Helen完成签到,获得积分0
21秒前
22秒前
22秒前
元宝同学发布了新的文献求助10
22秒前
量子星尘发布了新的文献求助10
23秒前
24秒前
28秒前
科研通AI5应助aaronpancn采纳,获得10
30秒前
31秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
An experimental and analytical investigation on the fatigue behaviour of fuselage riveted lap joints: The significance of the rivet squeeze force, and a comparison of 2024-T3 and Glare 3 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3664528
求助须知:如何正确求助?哪些是违规求助? 3224505
关于积分的说明 9757908
捐赠科研通 2934419
什么是DOI,文献DOI怎么找? 1606858
邀请新用户注册赠送积分活动 758873
科研通“疑难数据库(出版商)”最低求助积分说明 735018