Spatiotemporal variations of carbon dioxide (CO2) at Urban neighborhood scale: Characterization of distribution patterns and contributions of emission sources

环境科学 背景(考古学) 二氧化碳 温室气体 中午 大气科学 碳纤维 比例(比率) 自然地理学 气象学 地理 化学 地图学 生态学 地质学 数学 考古 生物 有机化学 算法 复合数
作者
Xing-hang Zhu,Kai-Fa Lu,Zhong‐Ren Peng,Hong-di He,Siqing Xu
出处
期刊:Sustainable Cities and Society [Elsevier]
卷期号:78: 103646-103646 被引量:61
标识
DOI:10.1016/j.scs.2021.103646
摘要

The gradual increase in atmospheric carbon dioxide (CO2) concentrations has attracted worldwide attention for its strong relationships with global climate change. Considerable efforts are being undertaken to characterize spatiotemporal variations of CO2 at a city, regional and national level, aiming at providing pipelines for carbon emission reduction. However, there is scarce knowledge of how CO2 at the urban neighborhood scale is produced and distributed in the context of time and space, which is useful to accurately target source contributions from the ground up and reduce carbon emissions at a fine-grained scale. In this study, mobile measurements of CO2 concentrations were made in a 2 km × 2 km urban area covering different land use types to separately characterize the spatiotemporal distribution patterns of CO2 in roadside, residential and green space areas. The results show that CO2 concentrations in the late afternoon (Local time, UTC+8, LT 17–18) were higher than those at noon (LT 11–12), and that CO2 concentrations in winter were higher than those in summer. The roadside areas exhibited the highest CO2 concentration level of 452.66 ± 20.59 ppm, followed by residential areas (436.34 ± 27.02 ppm) and green space areas (428.98 ± 20.49 ppm). The result indicates that traffic sources brought more carbon emissions and contributed to a significant increase in CO2 concentrations, while urban greenery caused more carbon absorptions and reduced CO2 concentrations. This can be further confirmed by the observations that CO2 concentrations in the roadside neighborhood showed a strong positive correlation (R2 = 0.86) with ambient traffic flow. Then two machine learning models, i.e., Random Forest and eXtreme Gradient Boost, were developed to quantify the individual contribution from different carbon emission sources to the CO2 distributions, including traffic flow, greening rate, and domestic energy consumption. The results show that traffic-related carbon emissions were the most important influencing factor and accounted for approximately 60% of ambient CO2 concentrations, followed by greening rate (20%) and domestic energy consumption (10%). These findings can provide insights into spatiotemporal distributions and source contributions of CO2 in urban neighborhoods and show huge potentials for reducing urban carbon emissions at a fine-grained scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牛的滑完成签到,获得积分20
刚刚
huihui完成签到,获得积分10
刚刚
刚刚
积极的白亦完成签到,获得积分10
1秒前
1秒前
polee完成签到,获得积分20
1秒前
realmar完成签到,获得积分10
1秒前
binges on choco完成签到,获得积分10
1秒前
SciGPT应助Gaojin锦采纳,获得10
2秒前
2秒前
昊昊发布了新的文献求助10
2秒前
脑洞疼应助牛马采纳,获得10
2秒前
爆米花应助dyuguo3采纳,获得10
2秒前
旰旰旰发布了新的文献求助10
2秒前
万能图书馆应助牛马采纳,获得10
2秒前
萨特完成签到,获得积分10
3秒前
2微恙发布了新的文献求助10
3秒前
隐形曼青应助个性的皮带采纳,获得10
3秒前
852应助yuanya采纳,获得10
3秒前
Anna发布了新的文献求助10
3秒前
3秒前
阿喵完成签到,获得积分10
4秒前
复杂从梦完成签到,获得积分10
4秒前
陈大星啊发布了新的文献求助10
4秒前
jing发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
5秒前
希望天下0贩的0应助jiaxuan采纳,获得10
5秒前
现代的冰珍完成签到,获得积分10
6秒前
团团团发布了新的文献求助10
7秒前
云那边的山完成签到,获得积分10
7秒前
丘比特应助任秦采纳,获得10
7秒前
7秒前
Ling完成签到,获得积分10
8秒前
直率书芹完成签到,获得积分10
8秒前
zhuchunjie发布了新的文献求助10
8秒前
牛的滑发布了新的文献求助10
9秒前
文静谷冬发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5434688
求助须知:如何正确求助?哪些是违规求助? 4547007
关于积分的说明 14205516
捐赠科研通 4467012
什么是DOI,文献DOI怎么找? 2448380
邀请新用户注册赠送积分活动 1439285
关于科研通互助平台的介绍 1416060