亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Spatiotemporal variations of carbon dioxide (CO2) at Urban neighborhood scale: Characterization of distribution patterns and contributions of emission sources

环境科学 背景(考古学) 二氧化碳 温室气体 中午 大气科学 碳纤维 比例(比率) 自然地理学 气象学 地理 化学 地图学 生态学 地质学 数学 考古 有机化学 复合数 生物 算法
作者
Xing-hang Zhu,Kai-Fa Lu,Zhong‐Ren Peng,Hong-di He,Siqing Xu
出处
期刊:Sustainable Cities and Society [Elsevier]
卷期号:78: 103646-103646 被引量:61
标识
DOI:10.1016/j.scs.2021.103646
摘要

The gradual increase in atmospheric carbon dioxide (CO2) concentrations has attracted worldwide attention for its strong relationships with global climate change. Considerable efforts are being undertaken to characterize spatiotemporal variations of CO2 at a city, regional and national level, aiming at providing pipelines for carbon emission reduction. However, there is scarce knowledge of how CO2 at the urban neighborhood scale is produced and distributed in the context of time and space, which is useful to accurately target source contributions from the ground up and reduce carbon emissions at a fine-grained scale. In this study, mobile measurements of CO2 concentrations were made in a 2 km × 2 km urban area covering different land use types to separately characterize the spatiotemporal distribution patterns of CO2 in roadside, residential and green space areas. The results show that CO2 concentrations in the late afternoon (Local time, UTC+8, LT 17–18) were higher than those at noon (LT 11–12), and that CO2 concentrations in winter were higher than those in summer. The roadside areas exhibited the highest CO2 concentration level of 452.66 ± 20.59 ppm, followed by residential areas (436.34 ± 27.02 ppm) and green space areas (428.98 ± 20.49 ppm). The result indicates that traffic sources brought more carbon emissions and contributed to a significant increase in CO2 concentrations, while urban greenery caused more carbon absorptions and reduced CO2 concentrations. This can be further confirmed by the observations that CO2 concentrations in the roadside neighborhood showed a strong positive correlation (R2 = 0.86) with ambient traffic flow. Then two machine learning models, i.e., Random Forest and eXtreme Gradient Boost, were developed to quantify the individual contribution from different carbon emission sources to the CO2 distributions, including traffic flow, greening rate, and domestic energy consumption. The results show that traffic-related carbon emissions were the most important influencing factor and accounted for approximately 60% of ambient CO2 concentrations, followed by greening rate (20%) and domestic energy consumption (10%). These findings can provide insights into spatiotemporal distributions and source contributions of CO2 in urban neighborhoods and show huge potentials for reducing urban carbon emissions at a fine-grained scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cl完成签到 ,获得积分10
6秒前
浮游应助科研通管家采纳,获得10
18秒前
默默问芙完成签到 ,获得积分10
41秒前
1分钟前
小潘完成签到 ,获得积分10
1分钟前
1分钟前
110o发布了新的文献求助10
1分钟前
十一苗完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
Tashanzhishi完成签到,获得积分10
2分钟前
kuoping完成签到,获得积分0
2分钟前
2分钟前
3分钟前
3分钟前
温馨家园完成签到 ,获得积分10
3分钟前
3分钟前
GIA完成签到,获得积分10
3分钟前
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
4分钟前
快乐飞丹发布了新的文献求助10
4分钟前
4分钟前
快乐飞丹完成签到,获得积分20
4分钟前
9527应助Wei采纳,获得10
5分钟前
大模型应助千堆雪claris采纳,获得10
5分钟前
充电宝应助平安喜乐采纳,获得10
5分钟前
5分钟前
5分钟前
研友_nEWRJ8完成签到,获得积分10
5分钟前
5分钟前
平安喜乐发布了新的文献求助10
5分钟前
天天快乐应助西西娃儿采纳,获得10
6分钟前
浮游应助科研通管家采纳,获得10
6分钟前
深情安青应助平安喜乐采纳,获得10
6分钟前
6分钟前
Wei发布了新的文献求助10
6分钟前
平安喜乐发布了新的文献求助10
6分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5292612
求助须知:如何正确求助?哪些是违规求助? 4443079
关于积分的说明 13830884
捐赠科研通 4326534
什么是DOI,文献DOI怎么找? 2374944
邀请新用户注册赠送积分活动 1370275
关于科研通互助平台的介绍 1334824