Spatiotemporal variations of carbon dioxide (CO2) at Urban neighborhood scale: Characterization of distribution patterns and contributions of emission sources

环境科学 背景(考古学) 二氧化碳 温室气体 中午 大气科学 碳纤维 比例(比率) 自然地理学 气象学 地理 化学 地图学 生态学 地质学 数学 考古 生物 有机化学 算法 复合数
作者
Xing-hang Zhu,Kai-Fa Lu,Zhong‐Ren Peng,Hong-di He,Siqing Xu
出处
期刊:Sustainable Cities and Society [Elsevier]
卷期号:78: 103646-103646 被引量:61
标识
DOI:10.1016/j.scs.2021.103646
摘要

The gradual increase in atmospheric carbon dioxide (CO2) concentrations has attracted worldwide attention for its strong relationships with global climate change. Considerable efforts are being undertaken to characterize spatiotemporal variations of CO2 at a city, regional and national level, aiming at providing pipelines for carbon emission reduction. However, there is scarce knowledge of how CO2 at the urban neighborhood scale is produced and distributed in the context of time and space, which is useful to accurately target source contributions from the ground up and reduce carbon emissions at a fine-grained scale. In this study, mobile measurements of CO2 concentrations were made in a 2 km × 2 km urban area covering different land use types to separately characterize the spatiotemporal distribution patterns of CO2 in roadside, residential and green space areas. The results show that CO2 concentrations in the late afternoon (Local time, UTC+8, LT 17–18) were higher than those at noon (LT 11–12), and that CO2 concentrations in winter were higher than those in summer. The roadside areas exhibited the highest CO2 concentration level of 452.66 ± 20.59 ppm, followed by residential areas (436.34 ± 27.02 ppm) and green space areas (428.98 ± 20.49 ppm). The result indicates that traffic sources brought more carbon emissions and contributed to a significant increase in CO2 concentrations, while urban greenery caused more carbon absorptions and reduced CO2 concentrations. This can be further confirmed by the observations that CO2 concentrations in the roadside neighborhood showed a strong positive correlation (R2 = 0.86) with ambient traffic flow. Then two machine learning models, i.e., Random Forest and eXtreme Gradient Boost, were developed to quantify the individual contribution from different carbon emission sources to the CO2 distributions, including traffic flow, greening rate, and domestic energy consumption. The results show that traffic-related carbon emissions were the most important influencing factor and accounted for approximately 60% of ambient CO2 concentrations, followed by greening rate (20%) and domestic energy consumption (10%). These findings can provide insights into spatiotemporal distributions and source contributions of CO2 in urban neighborhoods and show huge potentials for reducing urban carbon emissions at a fine-grained scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gj2221423完成签到 ,获得积分10
1秒前
00完成签到 ,获得积分10
2秒前
佳银完成签到,获得积分10
3秒前
Tohka完成签到 ,获得积分10
4秒前
小周完成签到 ,获得积分10
6秒前
7秒前
Aiden完成签到 ,获得积分10
8秒前
刻苦的芝麻完成签到 ,获得积分10
9秒前
曹先生完成签到,获得积分10
10秒前
12秒前
科科完成签到 ,获得积分10
13秒前
17312852068完成签到 ,获得积分10
13秒前
gao完成签到,获得积分10
14秒前
橙子完成签到 ,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
19秒前
hkh发布了新的文献求助10
20秒前
木仓完成签到,获得积分10
20秒前
月月鸟完成签到 ,获得积分10
20秒前
Ming完成签到,获得积分10
20秒前
GG完成签到,获得积分20
21秒前
hihi完成签到,获得积分10
21秒前
FashionBoy应助TianxingLiu采纳,获得10
22秒前
欧阳完成签到,获得积分10
22秒前
23秒前
小潘完成签到,获得积分10
24秒前
Nuyoah完成签到,获得积分10
24秒前
傲慢与偏见完成签到,获得积分10
25秒前
皮皮完成签到 ,获得积分10
26秒前
26秒前
影流完成签到,获得积分10
27秒前
缓慢的甜瓜完成签到,获得积分10
27秒前
塘仔完成签到,获得积分10
29秒前
zheng完成签到 ,获得积分10
29秒前
30秒前
许琦完成签到,获得积分10
30秒前
哎呀完成签到,获得积分10
31秒前
32秒前
hkh完成签到,获得积分10
32秒前
无奈安双完成签到,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418682
求助须知:如何正确求助?哪些是违规求助? 4534360
关于积分的说明 14143494
捐赠科研通 4450555
什么是DOI,文献DOI怎么找? 2441313
邀请新用户注册赠送积分活动 1433019
关于科研通互助平台的介绍 1410438