Phenotypic categorisation of individual subjects with motor neuron disease based on radiological disease burden patterns: A machine-learning approach

医学 疾病 上运动神经元 放射性武器 神经影像学 机器学习 肌萎缩侧索硬化 白质 人工智能 物理医学与康复 计算机科学 放射科 病理 磁共振成像 精神科
作者
Peter Bede,Aizuri Murad,Jasmin Lope,Stacey Li Hi Shing,Eoin Finegan,Rangariroyashe H. Chipika,Orla Hardiman,Kai‐Ming Chang
出处
期刊:Journal of the Neurological Sciences [Elsevier]
卷期号:432: 120079-120079 被引量:36
标识
DOI:10.1016/j.jns.2021.120079
摘要

Motor neuron disease is an umbrella term encompassing a multitude of clinically heterogeneous phenotypes. The early and accurate categorisation of patients is hugely important, as MND phenotypes are associated with markedly different prognoses, progression rates, care needs and benefit from divergent management strategies. The categorisation of patients shortly after symptom onset is challenging, and often lengthy clinical monitoring is needed to assign patients to the appropriate phenotypic subgroup. In this study, a multi-class machine-learning strategy was implemented to classify 300 patients based on their radiological profile into diagnostic labels along the UMN-LMN spectrum. A comprehensive panel of cortical thickness measures, subcortical grey matter variables, and white matter integrity metrics were evaluated in a multilayer perceptron (MLP) model. Additional exploratory analyses were also carried out using discriminant function analyses (DFA). Excellent classification accuracy was achieved for amyotrophic lateral sclerosis in the testing cohort (93.7%) using the MLP model, but poor diagnostic accuracy was detected for primary lateral sclerosis (43.8%) and poliomyelitis survivors (60%). Feature importance analyses highlighted the relevance of white matter diffusivity metrics and the evaluation of cerebellar indices, cingulate measures and thalamic radiation variables to discriminate MND phenotypes. Our data suggest that radiological data from single patients may be meaningfully interpreted if large training data sets are available and the provision of diagnostic probability outcomes may be clinically useful in patients with short symptom duration. The computational interpretation of multimodal radiology datasets herald viable diagnostic, prognostic and clinical trial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助灵巧墨镜采纳,获得10
刚刚
左岸完成签到,获得积分10
1秒前
李键刚完成签到 ,获得积分10
3秒前
我是老大应助向峻熙采纳,获得10
4秒前
5秒前
晚安886发布了新的文献求助10
5秒前
6秒前
平淡忻完成签到,获得积分10
6秒前
7秒前
zzzzzzzzzzzzzzzz完成签到,获得积分10
8秒前
健忘的荔枝完成签到 ,获得积分10
9秒前
orixero应助诚心爆米花采纳,获得10
9秒前
大模型应助科研通管家采纳,获得10
10秒前
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
zyfqpc应助科研通管家采纳,获得10
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
zyfqpc应助科研通管家采纳,获得10
10秒前
田様应助科研通管家采纳,获得10
10秒前
许起眸完成签到,获得积分10
11秒前
11秒前
12秒前
小橙子发布了新的文献求助100
13秒前
上官若男应助文献来来来采纳,获得10
14秒前
福来给福来的求助进行了留言
14秒前
17秒前
刘晓倩发布了新的文献求助100
18秒前
18秒前
淡定幼珊完成签到,获得积分20
19秒前
来昕发布了新的文献求助10
20秒前
Jasper应助吴彦祖采纳,获得10
20秒前
20秒前
田様应助小橙子采纳,获得10
20秒前
球球发布了新的文献求助10
23秒前
小二郎应助舒心思雁采纳,获得10
25秒前
8R60d8应助jin采纳,获得50
25秒前
枷锁发布了新的文献求助10
25秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244342
求助须知:如何正确求助?哪些是违规求助? 2888037
关于积分的说明 8251070
捐赠科研通 2556507
什么是DOI,文献DOI怎么找? 1384886
科研通“疑难数据库(出版商)”最低求助积分说明 649943
邀请新用户注册赠送积分活动 626045