Phenotypic categorisation of individual subjects with motor neuron disease based on radiological disease burden patterns: A machine-learning approach

医学 疾病 上运动神经元 放射性武器 神经影像学 机器学习 肌萎缩侧索硬化 白质 人工智能 物理医学与康复 计算机科学 放射科 病理 磁共振成像 精神科
作者
Peter Bede,Aizuri Murad,Jasmin Lope,Stacey Li Hi Shing,Eoin Finegan,Rangariroyashe H. Chipika,Orla Hardiman,Kai‐Ming Chang
出处
期刊:Journal of the Neurological Sciences [Elsevier BV]
卷期号:432: 120079-120079 被引量:36
标识
DOI:10.1016/j.jns.2021.120079
摘要

Motor neuron disease is an umbrella term encompassing a multitude of clinically heterogeneous phenotypes. The early and accurate categorisation of patients is hugely important, as MND phenotypes are associated with markedly different prognoses, progression rates, care needs and benefit from divergent management strategies. The categorisation of patients shortly after symptom onset is challenging, and often lengthy clinical monitoring is needed to assign patients to the appropriate phenotypic subgroup. In this study, a multi-class machine-learning strategy was implemented to classify 300 patients based on their radiological profile into diagnostic labels along the UMN-LMN spectrum. A comprehensive panel of cortical thickness measures, subcortical grey matter variables, and white matter integrity metrics were evaluated in a multilayer perceptron (MLP) model. Additional exploratory analyses were also carried out using discriminant function analyses (DFA). Excellent classification accuracy was achieved for amyotrophic lateral sclerosis in the testing cohort (93.7%) using the MLP model, but poor diagnostic accuracy was detected for primary lateral sclerosis (43.8%) and poliomyelitis survivors (60%). Feature importance analyses highlighted the relevance of white matter diffusivity metrics and the evaluation of cerebellar indices, cingulate measures and thalamic radiation variables to discriminate MND phenotypes. Our data suggest that radiological data from single patients may be meaningfully interpreted if large training data sets are available and the provision of diagnostic probability outcomes may be clinically useful in patients with short symptom duration. The computational interpretation of multimodal radiology datasets herald viable diagnostic, prognostic and clinical trial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
狗不理发布了新的文献求助10
1秒前
帅仁123完成签到,获得积分20
1秒前
晴晴完成签到,获得积分10
2秒前
书生完成签到,获得积分10
2秒前
在水一方应助星星采纳,获得10
2秒前
2秒前
Rachel完成签到,获得积分20
3秒前
SHIROKO完成签到,获得积分10
3秒前
nns完成签到,获得积分10
3秒前
派大星发布了新的文献求助10
4秒前
兜兜窦完成签到,获得积分10
4秒前
seven发布了新的文献求助10
4秒前
danny发布了新的文献求助10
5秒前
5秒前
深情安青应助贪玩的听荷采纳,获得10
6秒前
文艺的又亦完成签到,获得积分10
6秒前
黄黄完成签到,获得积分0
6秒前
顺利紫山发布了新的文献求助10
7秒前
西红柿完成签到,获得积分0
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
帕尼灬尼发布了新的文献求助10
7秒前
大力老木发布了新的文献求助10
7秒前
8秒前
8秒前
lkjh驳回了佳佳应助
8秒前
9秒前
9秒前
愉快绿蓉关注了科研通微信公众号
9秒前
9秒前
9秒前
10秒前
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635