已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Phenotypic categorisation of individual subjects with motor neuron disease based on radiological disease burden patterns: A machine-learning approach

医学 疾病 上运动神经元 放射性武器 神经影像学 机器学习 肌萎缩侧索硬化 白质 人工智能 物理医学与康复 计算机科学 放射科 病理 磁共振成像 精神科
作者
Peter Bede,Aizuri Murad,Jasmin Lope,Stacey Li Hi Shing,Eoin Finegan,Rangariroyashe H. Chipika,Orla Hardiman,Kai‐Ming Chang
出处
期刊:Journal of the Neurological Sciences [Elsevier BV]
卷期号:432: 120079-120079 被引量:36
标识
DOI:10.1016/j.jns.2021.120079
摘要

Motor neuron disease is an umbrella term encompassing a multitude of clinically heterogeneous phenotypes. The early and accurate categorisation of patients is hugely important, as MND phenotypes are associated with markedly different prognoses, progression rates, care needs and benefit from divergent management strategies. The categorisation of patients shortly after symptom onset is challenging, and often lengthy clinical monitoring is needed to assign patients to the appropriate phenotypic subgroup. In this study, a multi-class machine-learning strategy was implemented to classify 300 patients based on their radiological profile into diagnostic labels along the UMN-LMN spectrum. A comprehensive panel of cortical thickness measures, subcortical grey matter variables, and white matter integrity metrics were evaluated in a multilayer perceptron (MLP) model. Additional exploratory analyses were also carried out using discriminant function analyses (DFA). Excellent classification accuracy was achieved for amyotrophic lateral sclerosis in the testing cohort (93.7%) using the MLP model, but poor diagnostic accuracy was detected for primary lateral sclerosis (43.8%) and poliomyelitis survivors (60%). Feature importance analyses highlighted the relevance of white matter diffusivity metrics and the evaluation of cerebellar indices, cingulate measures and thalamic radiation variables to discriminate MND phenotypes. Our data suggest that radiological data from single patients may be meaningfully interpreted if large training data sets are available and the provision of diagnostic probability outcomes may be clinically useful in patients with short symptom duration. The computational interpretation of multimodal radiology datasets herald viable diagnostic, prognostic and clinical trial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
量子星尘发布了新的文献求助10
刚刚
康康完成签到 ,获得积分10
3秒前
夏尔发布了新的文献求助10
4秒前
5秒前
7秒前
肖易应助xiaolong采纳,获得10
7秒前
汉堡包应助车鹭洋采纳,获得10
7秒前
黄毛虎完成签到 ,获得积分0
8秒前
FashionBoy应助有钱采纳,获得10
10秒前
darqin完成签到 ,获得积分10
10秒前
端庄的如花完成签到,获得积分10
10秒前
脑洞疼应助科研通管家采纳,获得10
12秒前
英俊的铭应助科研通管家采纳,获得30
12秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
12秒前
怕孤独的忆南完成签到,获得积分10
13秒前
13秒前
啦啦啦发布了新的文献求助10
13秒前
科研通AI2S应助creepppp采纳,获得10
13秒前
科研通AI6应助饱满的晓凡采纳,获得10
14秒前
无聊的迎波完成签到,获得积分20
16秒前
亲爱的安德烈完成签到,获得积分10
16秒前
穷鬼爬行发布了新的文献求助50
18秒前
彭于晏应助啦啦啦采纳,获得10
19秒前
肖易应助xiaolong采纳,获得10
19秒前
斯文梦寒完成签到 ,获得积分10
20秒前
21秒前
然来溪完成签到 ,获得积分10
21秒前
22秒前
22秒前
sunny66cai完成签到,获得积分10
22秒前
隔壁巷子里的劉完成签到 ,获得积分10
25秒前
goodice完成签到,获得积分20
26秒前
机灵天亦完成签到,获得积分10
26秒前
26秒前
sunny66cai发布了新的文献求助10
27秒前
liwenchao完成签到,获得积分10
27秒前
土豪的摩托完成签到 ,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610291
求助须知:如何正确求助?哪些是违规求助? 4016305
关于积分的说明 12434932
捐赠科研通 3697878
什么是DOI,文献DOI怎么找? 2039077
邀请新用户注册赠送积分活动 1071968
科研通“疑难数据库(出版商)”最低求助积分说明 955614