亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comparison of the automated monitoring of the sow activity in farrowing pens using video and accelerometer data

加速度计 计算机科学 计算机视觉 人工智能 活动识别 对象(语法) 操作系统
作者
Maciej Oczak,Florian Bayer,Sebastian G. Vetter,Kristina Maschat,Johannes Baumgartner
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:192: 106517-106517 被引量:5
标识
DOI:10.1016/j.compag.2021.106517
摘要

• RetinaNet object detection algorithm was used to detect parts of a body of a sow. • Activity of different body parts were estimated based on object detection. • Two technologies were compared, ear tag accelerometer with computer vision. • Both technologies provide very similar information on activity level of animals. Patterns in pigs activity can be an indicator of health and welfare of the animals. This motivates researchers to develop Precision Livestock Farming (PLF) tools for automated monitoring of pig activity level. In this research we compared two important technologies that can be used for this purpose, ear tag accelerometer and computer vision. Additionally, we compared both technologies with gold standard based on human labelling. A state-of-the-art object detection algorithm RetinaNet was trained on 9969 images and validated on 4273 images to automatically detect head of a sow, body of a sow, left ear, right ear and a hay rack. It was possible to detect these objects with a performance of 0.26 mAP@0.5:0.95. Activity of 6 sows was derived from detected parts of animals’ bodies and compared with activity measurement based on ear tag accelerometer data. Dynamic relation between activity measurement based on both technologies was modelled with Transfer Function (TF) models. For all 6 animals activity of the body of a sow based on object detection was very similar to accelerometer based activity measurement ( R 2 > 0.7). Similarly R 2 between activity of a head of a sow and accelerometer based activity was also very similar for most sows ( R 2 > 0.7). Results of fitting of TF models to animal activity data based on ear tag accelerometer and output of object detection on body of sows and head of sows suggests that both technologies, the accelerometer and computer vision provide very similar information on activity level of animals. The presented computer vision method is limited to monitoring one animal under camera view as detected body parts cannot be associated with multiple individuals. Moreover, we expect that the method requires re-training the RetinaNet object detection algorithm with additional images collected on additional farms to achieve satisfactory performance in different environments. Application of computer vision approach might be advantageous in some PLF applications as it is non-invasive and might be less laborious than method based on ear tag accelerometer data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱寻完成签到 ,获得积分10
21秒前
慕青应助阿柴采纳,获得10
26秒前
33秒前
迷茫的一代完成签到,获得积分10
1分钟前
Cuisine完成签到,获得积分10
1分钟前
1分钟前
Cuisine发布了新的文献求助10
1分钟前
科研通AI2S应助科研通管家采纳,获得100
2分钟前
yukeshou完成签到,获得积分10
2分钟前
zsmj23完成签到 ,获得积分0
2分钟前
3分钟前
在水一方应助吴欣霞采纳,获得10
3分钟前
3分钟前
lisasaguan发布了新的文献求助10
3分钟前
3分钟前
深情安青应助lisasaguan采纳,获得10
3分钟前
Hello应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
吴欣霞发布了新的文献求助10
4分钟前
无花果应助Keily采纳,获得50
4分钟前
萝卜丁完成签到 ,获得积分0
4分钟前
4分钟前
Keily发布了新的文献求助50
4分钟前
吴欣霞完成签到,获得积分10
5分钟前
5分钟前
P_Chem完成签到,获得积分10
5分钟前
Keily完成签到,获得积分10
5分钟前
6分钟前
汉堡包应助科研通管家采纳,获得30
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
小蘑菇应助科研通管家采纳,获得10
6分钟前
6分钟前
Ava应助神勇的蛋挞采纳,获得10
6分钟前
香蕉觅云应助jianwuzhou采纳,获得10
6分钟前
6分钟前
6分钟前
6分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466835
求助须知:如何正确求助?哪些是违规求助? 3059635
关于积分的说明 9067260
捐赠科研通 2750124
什么是DOI,文献DOI怎么找? 1509045
科研通“疑难数据库(出版商)”最低求助积分说明 697124
邀请新用户注册赠送积分活动 696896