亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comparison of the automated monitoring of the sow activity in farrowing pens using video and accelerometer data

加速度计 计算机科学 计算机视觉 人工智能 活动识别 对象(语法) 操作系统
作者
Maciej Oczak,Florian Bayer,Sebastian G. Vetter,Kristina Maschat,Johannes Baumgartner
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:192: 106517-106517 被引量:5
标识
DOI:10.1016/j.compag.2021.106517
摘要

• RetinaNet object detection algorithm was used to detect parts of a body of a sow. • Activity of different body parts were estimated based on object detection. • Two technologies were compared, ear tag accelerometer with computer vision. • Both technologies provide very similar information on activity level of animals. Patterns in pigs activity can be an indicator of health and welfare of the animals. This motivates researchers to develop Precision Livestock Farming (PLF) tools for automated monitoring of pig activity level. In this research we compared two important technologies that can be used for this purpose, ear tag accelerometer and computer vision. Additionally, we compared both technologies with gold standard based on human labelling. A state-of-the-art object detection algorithm RetinaNet was trained on 9969 images and validated on 4273 images to automatically detect head of a sow, body of a sow, left ear, right ear and a hay rack. It was possible to detect these objects with a performance of 0.26 mAP@0.5:0.95. Activity of 6 sows was derived from detected parts of animals’ bodies and compared with activity measurement based on ear tag accelerometer data. Dynamic relation between activity measurement based on both technologies was modelled with Transfer Function (TF) models. For all 6 animals activity of the body of a sow based on object detection was very similar to accelerometer based activity measurement ( R 2 > 0.7). Similarly R 2 between activity of a head of a sow and accelerometer based activity was also very similar for most sows ( R 2 > 0.7). Results of fitting of TF models to animal activity data based on ear tag accelerometer and output of object detection on body of sows and head of sows suggests that both technologies, the accelerometer and computer vision provide very similar information on activity level of animals. The presented computer vision method is limited to monitoring one animal under camera view as detected body parts cannot be associated with multiple individuals. Moreover, we expect that the method requires re-training the RetinaNet object detection algorithm with additional images collected on additional farms to achieve satisfactory performance in different environments. Application of computer vision approach might be advantageous in some PLF applications as it is non-invasive and might be less laborious than method based on ear tag accelerometer data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sting发布了新的文献求助10
1秒前
5秒前
司空铭发布了新的文献求助10
10秒前
24秒前
司空铭完成签到,获得积分20
29秒前
容若发布了新的文献求助10
29秒前
32秒前
在水一方完成签到 ,获得积分0
44秒前
Orange应助容若采纳,获得10
47秒前
爆米花应助sunshine采纳,获得10
55秒前
1分钟前
陈如馨发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
yusovegoistt发布了新的文献求助10
1分钟前
nenoaowu完成签到,获得积分10
1分钟前
sunshine发布了新的文献求助10
1分钟前
陈如馨完成签到,获得积分10
1分钟前
1分钟前
容若发布了新的文献求助10
1分钟前
judy007发布了新的文献求助150
1分钟前
科目三应助活力的妙菡采纳,获得30
1分钟前
万能图书馆应助容若采纳,获得10
1分钟前
风华正茂完成签到,获得积分10
1分钟前
Zed发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
苏震坤发布了新的文献求助10
2分钟前
2分钟前
2分钟前
容若发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
情怀应助容若采纳,获得10
2分钟前
活力的妙菡完成签到,获得积分20
2分钟前
2分钟前
舒服的觅云完成签到,获得积分10
2分钟前
苏震坤发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4611385
求助须知:如何正确求助?哪些是违规求助? 4016925
关于积分的说明 12435844
捐赠科研通 3698805
什么是DOI,文献DOI怎么找? 2039712
邀请新用户注册赠送积分活动 1072522
科研通“疑难数据库(出版商)”最低求助积分说明 956191