Stratification of prostate cancer patients into low‐ and high‐grade groups using multiparametric magnetic resonance radiomics with dynamic contrast‐enhanced image joint histograms

直方图 接收机工作特性 前列腺癌 磁共振成像 医学 模式识别(心理学) 人工智能 核医学 前列腺 癌症 计算机科学 放射科 图像(数学) 内科学
作者
Akimasa Urakami,Hidetaka Arimura,Yoshiaki Takayama,Fumio Kinoshita,Kenta Ninomiya,Kenjiro Imada,Soichi Watanabe,Akihiro Nishie,Yoshinao Oda,Kousei Ishigami
出处
期刊:The Prostate [Wiley]
卷期号:82 (3): 330-344 被引量:4
标识
DOI:10.1002/pros.24278
摘要

This study aimed to investigate the potential of stratification of prostate cancer patients into low- and high-grade groups (GGs) using multiparametric magnetic resonance (mpMR) radiomics in conjunction with two-dimensional (2D) joint histograms computed with dynamic contrast-enhanced (DCE) images.A total of 101 prostate cancer regions extracted from the MR images of 44 patients were identified and divided into training (n = 31 with 72 cancer regions) and test datasets (n = 13 with 29 cancer regions). Each dataset included low-grade tumors (International Society of Urological Pathology [ISUP] GG ≤ 2) and high-grade tumors (ISUP GG ≥ 3). A total of 137,970 features consisted of mpMR image (16 types of images in four sequences)-based and joint histogram (DCE images at 10 phases)-based features for each cancer region. Joint histogram features can visualize temporally changing perfusion patterns in prostate cancer based on the joint histograms between different phases or subtraction phases of DCE images. Nine signatures (a set of significant features related to GGs) were determined using the best combinations of features selected using the least absolute shrinkage and selection operator. Further, support vector machine models with the nine signatures were built based on a leave-one-out cross-validation for the training dataset and evaluated with receiver operating characteristic (ROC) curve analysis.The signature showing the best performance was constructed using six features derived from the joint histograms, DCE original images, and apparent diffusion coefficient maps. The areas under the ROC curves for the training and test datasets were 1.00 and 0.985, respectively.This study suggests that the proposed approach with mpMR radiomics in conjunction with 2D joint histogram computed with DCE images could have the potential to stratify prostate cancer patients into low- and high-GGs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Medneuron发布了新的文献求助10
1秒前
糖糖发布了新的文献求助10
1秒前
明理迎曼发布了新的文献求助30
2秒前
CodeCraft应助zxxxx采纳,获得10
2秒前
我是老大应助大吱吱采纳,获得10
2秒前
8R60d8应助HXXXY采纳,获得10
4秒前
6秒前
7秒前
JamesPei应助kk采纳,获得10
7秒前
科研通AI2S应助芝士香猪采纳,获得10
10秒前
xiaoxiao发布了新的文献求助10
11秒前
12秒前
12秒前
14秒前
14秒前
丛玉林发布了新的文献求助50
14秒前
CodeCraft应助苹果采纳,获得10
15秒前
15秒前
zzcc发布了新的文献求助10
15秒前
16秒前
zxxxx发布了新的文献求助10
16秒前
applepie发布了新的文献求助10
18秒前
18秒前
Ashley发布了新的文献求助10
18秒前
18秒前
19秒前
21秒前
李爱国应助糖糖采纳,获得10
21秒前
22秒前
积极的雨发布了新的文献求助10
22秒前
1257应助科研通管家采纳,获得10
22秒前
思源应助科研通管家采纳,获得10
22秒前
23秒前
小蘑菇应助科研通管家采纳,获得10
23秒前
23秒前
思源应助科研通管家采纳,获得10
23秒前
桐桐应助科研通管家采纳,获得10
23秒前
顾矜应助科研通管家采纳,获得10
23秒前
我是老大应助科研通管家采纳,获得10
23秒前
高分求助中
中国国际图书贸易总公司40周年纪念文集: 史论集 2500
Sustainability in Tides Chemistry 2000
2021下半年大理州人民医院招聘试题及答案 1000
大理州人民医院2021上半年(卫生类)人员招聘试题及解析 1000
2023云南大理州事业单位招聘专业技术人员医疗岗162人笔试历年典型考题及考点剖析附带答案详解 1000
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3113948
求助须知:如何正确求助?哪些是违规求助? 2764174
关于积分的说明 7677552
捐赠科研通 2419348
什么是DOI,文献DOI怎么找? 1284446
科研通“疑难数据库(出版商)”最低求助积分说明 619648
版权声明 599685