正交性
多路复用
人工神经网络
光学
计算机科学
不变(物理)
酉变换
光学计算
模式(计算机接口)
单一制国家
物理
人工智能
电信
数学
几何学
量子
操作系统
量子力学
数学物理
政治学
法学
作者
Shuiqin Zheng,Shixiang Xu,Dianyuan Fan
出处
期刊:Optics Letters
[Optica Publishing Group]
日期:2022-03-01
卷期号:47 (7): 1798-1798
被引量:18
摘要
Some rules of the diffractive deep neural network (D2NN) are discovered. They reveal that the inner product of any two optical fields in D2NN is invariant and the D2NN acts as a unitary transformation for optical fields. If the output intensities of the two inputs are separated spatially, the input fields must be orthogonal. These rules imply that the D2NN is not only suitable for the classification of general objects but also more suitable for applications aimed at optical orthogonal modes. Our simulation shows the D2NN performs well in applications like mode conversion, mode multiplexing/demultiplexing, and optical mode recognition.
科研通智能强力驱动
Strongly Powered by AbleSci AI