Lightweight Hardware Architecture for Object Detection in Driver Assistance Systems

计算机科学 目标检测 人工智能 管道(软件) 卷积神经网络 建筑 对象(语法) 计算机视觉 特征(语言学) 卷积(计算机科学) 探测器 实时计算 人工神经网络 模式识别(心理学) 电信 哲学 艺术 视觉艺术 程序设计语言 语言学
作者
Bhaumik Vaidya,Chirag N. Paunwala
出处
期刊:International Journal of Pattern Recognition and Artificial Intelligence [World Scientific]
卷期号:36 (07) 被引量:2
标识
DOI:10.1142/s0218001422500276
摘要

Object detection on hardware platforms plays a very significant role in developing driver assistance systems (DASs) with limited computational resources. Object detection for DAS is a multiclass detection problem that involves detecting various objects like cars, auto, traffic lights, bicycles, pedestrians, etc. DAS also requires accuracy, speed, and sensitivity for detecting these objects in various challenging conditions. The lighting and weather conditions pose a serious challenge for accurate object detection for DAS. This paper proposes a speed-efficient and lightweight fully convolutional neural network (CNN) architecture for object detection in adverse rainy conditions. The proposed architecture uses a CNN-based deraining network with a custom SSIM loss function in the object detection pipeline, which can give an accurate performance using limited computational and memory resources. The object detection architecture contains some architectural modifications to the existing single shot multibox detector (SSD) architecture to make it more hardware efficient and improve accuracy on small objects. It uses a trainable color transformation module using [Formula: see text] convolutions for handling the adverse lighting conditions encountered in DAS. The architecture uses feature fusion and the dilated convolution approach to enhance the accuracy of the proposed architecture on small objects. The datasets available for object detection in DAS are very imbalanced with cars as a predominant object. The class weight penalization technique is used to improve the performance of the architecture on scarcely present objects. The performance of the architecture is evaluated on well-known datasets like Kitti, Udacity, Indian Driving Dataset (IDD), and DAWN. The architecture achieves satisfactory performance in terms of mean average precision (mAP) and detection time on all these datasets. It requires three times fewer hardware resources compared to existing architectures. The lightweight nature of the proposed architecture and modification of CNN architecture with TensorRT allow the efficient implementation on the jetson nanohardware platform for prototyping, which can be integrated with other intelligent transportation systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lin琳发布了新的文献求助10
1秒前
闪闪的屁股完成签到,获得积分10
2秒前
3秒前
4秒前
12345发布了新的文献求助10
5秒前
5秒前
KingYugene发布了新的文献求助10
6秒前
sigmund完成签到,获得积分20
7秒前
7秒前
乐乐应助遇疯儿采纳,获得10
8秒前
8秒前
9秒前
不可以虫鸣吗我是大聪明完成签到 ,获得积分10
9秒前
浮游应助红糖小糍粑采纳,获得10
9秒前
Criminology34应助红糖小糍粑采纳,获得10
9秒前
10秒前
要减肥的半山完成签到,获得积分10
10秒前
11秒前
Lin琳完成签到,获得积分20
12秒前
文静发布了新的文献求助10
12秒前
小小超发布了新的文献求助10
12秒前
艾米尼发布了新的文献求助10
12秒前
KingYugene完成签到,获得积分10
13秒前
慕青应助hahaagain采纳,获得10
13秒前
14秒前
小二郎应助无奈的鞋子采纳,获得10
14秒前
yuanyuan完成签到,获得积分10
15秒前
科研通AI6应助Hh采纳,获得10
15秒前
浮游应助鹤九采纳,获得10
15秒前
16秒前
16秒前
文静完成签到,获得积分10
16秒前
小王发布了新的文献求助10
17秒前
17秒前
斯文绝音完成签到,获得积分10
17秒前
ddrose发布了新的文献求助10
19秒前
更明发布了新的文献求助10
20秒前
21秒前
KSung完成签到 ,获得积分10
22秒前
22秒前
高分求助中
Comprehensive Chirality Second Edition 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4978174
求助须知:如何正确求助?哪些是违规求助? 4231199
关于积分的说明 13178705
捐赠科研通 4021946
什么是DOI,文献DOI怎么找? 2200483
邀请新用户注册赠送积分活动 1212958
关于科研通互助平台的介绍 1129258