Lightweight Hardware Architecture for Object Detection in Driver Assistance Systems

计算机科学 目标检测 人工智能 管道(软件) 卷积神经网络 建筑 对象(语法) 计算机视觉 特征(语言学) 卷积(计算机科学) 探测器 实时计算 人工神经网络 模式识别(心理学) 艺术 语言学 视觉艺术 程序设计语言 电信 哲学
作者
Bhaumik Vaidya,Chirag N. Paunwala
出处
期刊:International Journal of Pattern Recognition and Artificial Intelligence [World Scientific]
卷期号:36 (07) 被引量:2
标识
DOI:10.1142/s0218001422500276
摘要

Object detection on hardware platforms plays a very significant role in developing driver assistance systems (DASs) with limited computational resources. Object detection for DAS is a multiclass detection problem that involves detecting various objects like cars, auto, traffic lights, bicycles, pedestrians, etc. DAS also requires accuracy, speed, and sensitivity for detecting these objects in various challenging conditions. The lighting and weather conditions pose a serious challenge for accurate object detection for DAS. This paper proposes a speed-efficient and lightweight fully convolutional neural network (CNN) architecture for object detection in adverse rainy conditions. The proposed architecture uses a CNN-based deraining network with a custom SSIM loss function in the object detection pipeline, which can give an accurate performance using limited computational and memory resources. The object detection architecture contains some architectural modifications to the existing single shot multibox detector (SSD) architecture to make it more hardware efficient and improve accuracy on small objects. It uses a trainable color transformation module using [Formula: see text] convolutions for handling the adverse lighting conditions encountered in DAS. The architecture uses feature fusion and the dilated convolution approach to enhance the accuracy of the proposed architecture on small objects. The datasets available for object detection in DAS are very imbalanced with cars as a predominant object. The class weight penalization technique is used to improve the performance of the architecture on scarcely present objects. The performance of the architecture is evaluated on well-known datasets like Kitti, Udacity, Indian Driving Dataset (IDD), and DAWN. The architecture achieves satisfactory performance in terms of mean average precision (mAP) and detection time on all these datasets. It requires three times fewer hardware resources compared to existing architectures. The lightweight nature of the proposed architecture and modification of CNN architecture with TensorRT allow the efficient implementation on the jetson nanohardware platform for prototyping, which can be integrated with other intelligent transportation systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xuesensu完成签到 ,获得积分10
3秒前
豌豆完成签到,获得积分10
4秒前
M先生完成签到,获得积分10
4秒前
5秒前
7秒前
科研通AI5应助sun采纳,获得10
7秒前
shitzu完成签到 ,获得积分10
8秒前
choco发布了新的文献求助10
10秒前
11秒前
李健的小迷弟应助sun采纳,获得10
11秒前
Jzhang应助liyuchen采纳,获得10
11秒前
魏伯安发布了新的文献求助30
11秒前
jjjjjj发布了新的文献求助30
13秒前
14秒前
伯赏诗霜发布了新的文献求助10
14秒前
糟糕的鹏飞完成签到 ,获得积分10
15秒前
15秒前
欢呼凡旋完成签到,获得积分10
16秒前
韩邹光完成签到,获得积分10
18秒前
xg发布了新的文献求助10
18秒前
19秒前
dktrrrr完成签到,获得积分10
19秒前
季生完成签到,获得积分10
22秒前
徐徐完成签到,获得积分10
22秒前
23秒前
23秒前
haku完成签到,获得积分10
25秒前
可爱的函函应助laodie采纳,获得10
27秒前
Singularity应助忆楠采纳,获得10
28秒前
29秒前
请叫我风吹麦浪应助PengHu采纳,获得30
30秒前
jjjjjj完成签到,获得积分10
30秒前
凝子老师发布了新的文献求助10
32秒前
32秒前
橙子fy16_发布了新的文献求助10
34秒前
cookie完成签到,获得积分10
34秒前
柒柒的小熊完成签到,获得积分10
35秒前
35秒前
Hello应助萌之痴痴采纳,获得10
36秒前
hahaer完成签到,获得积分10
38秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849