Lightweight Hardware Architecture for Object Detection in Driver Assistance Systems

计算机科学 目标检测 人工智能 管道(软件) 卷积神经网络 建筑 对象(语法) 计算机视觉 特征(语言学) 卷积(计算机科学) 探测器 实时计算 人工神经网络 模式识别(心理学) 艺术 语言学 视觉艺术 程序设计语言 电信 哲学
作者
Bhaumik Vaidya,Chirag N. Paunwala
出处
期刊:International Journal of Pattern Recognition and Artificial Intelligence [World Scientific]
卷期号:36 (07) 被引量:2
标识
DOI:10.1142/s0218001422500276
摘要

Object detection on hardware platforms plays a very significant role in developing driver assistance systems (DASs) with limited computational resources. Object detection for DAS is a multiclass detection problem that involves detecting various objects like cars, auto, traffic lights, bicycles, pedestrians, etc. DAS also requires accuracy, speed, and sensitivity for detecting these objects in various challenging conditions. The lighting and weather conditions pose a serious challenge for accurate object detection for DAS. This paper proposes a speed-efficient and lightweight fully convolutional neural network (CNN) architecture for object detection in adverse rainy conditions. The proposed architecture uses a CNN-based deraining network with a custom SSIM loss function in the object detection pipeline, which can give an accurate performance using limited computational and memory resources. The object detection architecture contains some architectural modifications to the existing single shot multibox detector (SSD) architecture to make it more hardware efficient and improve accuracy on small objects. It uses a trainable color transformation module using [Formula: see text] convolutions for handling the adverse lighting conditions encountered in DAS. The architecture uses feature fusion and the dilated convolution approach to enhance the accuracy of the proposed architecture on small objects. The datasets available for object detection in DAS are very imbalanced with cars as a predominant object. The class weight penalization technique is used to improve the performance of the architecture on scarcely present objects. The performance of the architecture is evaluated on well-known datasets like Kitti, Udacity, Indian Driving Dataset (IDD), and DAWN. The architecture achieves satisfactory performance in terms of mean average precision (mAP) and detection time on all these datasets. It requires three times fewer hardware resources compared to existing architectures. The lightweight nature of the proposed architecture and modification of CNN architecture with TensorRT allow the efficient implementation on the jetson nanohardware platform for prototyping, which can be integrated with other intelligent transportation systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Lucas应助刘岩松采纳,获得10
刚刚
刚刚
1秒前
xiaofan完成签到,获得积分20
1秒前
宋二庆完成签到,获得积分10
1秒前
1秒前
咸鱼好忙发布了新的文献求助30
2秒前
无情的函发布了新的文献求助10
2秒前
小巧吐司发布了新的文献求助10
2秒前
小王完成签到,获得积分10
2秒前
咖啡豆完成签到,获得积分10
2秒前
小吴完成签到,获得积分10
3秒前
潦草小狗完成签到,获得积分10
3秒前
3秒前
4秒前
神勇雨双完成签到,获得积分10
4秒前
4秒前
阿玉发布了新的文献求助10
4秒前
5秒前
科研小菜完成签到,获得积分10
5秒前
5秒前
李健应助古月采纳,获得10
5秒前
lic完成签到,获得积分10
5秒前
6秒前
科研通AI2S应助小王采纳,获得10
6秒前
6秒前
yydragen应助XHT采纳,获得30
7秒前
橙汁完成签到,获得积分20
7秒前
结实缘郡完成签到,获得积分10
7秒前
深情安青应助对照采纳,获得10
7秒前
rain完成签到 ,获得积分10
7秒前
JamesPei应助研友_nPoDRL采纳,获得10
8秒前
踏雪无痕发布了新的文献求助10
8秒前
lxy发布了新的文献求助10
8秒前
科研小菜发布了新的文献求助10
8秒前
9秒前
9秒前
khurram发布了新的文献求助10
10秒前
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600