纳米复合材料
材料科学
循环伏安法
微分脉冲伏安法
介电谱
电催化剂
线性扫描伏安法
电化学
电化学气体传感器
化学工程
核化学
纳米技术
电极
化学
物理化学
工程类
作者
Sayfa Bano,Adil Shafi Ganie,R. Imran Khan,Saima Sultana,Mohammad Zain Khan,Suhail Sabir
标识
DOI:10.1016/j.surfin.2022.101786
摘要
The excessive use and disposal of antibiotic drugs and toxic solvents in the environment make it necessary to construct and design an efficient, subtle, and reliable sensor for the quantification and control of toxic pollutants. Novel PPy/Bi2MoO6/chitosan nanocomposites have been prepared for the electrochemical detection of ciprofloxacin (fluoroquinolone antibiotic) and benzene. Various spectroscopic and analytical techniques have been utilized for the elucidation of the structural, optical, and morphological properties of the nanocomposites sensors. The particle size of BM, Py-BM and Py-BM-CH1 nanocomposite was calculated to be 15.69 nm, 17.25 nm and 18.57 nm, respectively. The prepared nanocomposites also showed exfoliated morphology which enhances the surface area of the materials. The electroanalytical performance of the catalysts was analyzed via cyclic voltammetry (CV) and electrochemical impedance spectroscopy techniques (EIS). Moreover, the electrochemical detection was comprehensively assessed with linear sweep voltammetry and differential pulse voltammetry. The as-prepared sensor has shown a distinct increase in electrocatalytic and electrochemical activity, which led to its utilization in the electrochemical determination of toxicants, etc. Furthermore, experimental results have confirmed high sensitivity because of the increased surface area and electron mobility of the electrocatalyst. The linear concentration falls into two distinct ranges for both analytes with low LOD value and high sensitivity (0.01 μM to 1500 μM for CIP and 0.05 mM to 500 mM for benzene). Moreover, the nanocomposites have also been evaluated for the estimation of hydrogen evolution reaction, which is a major step in the production of hydrogen. The electrocatalyst has shown low Tafel slopes with low overpotential, reflecting the better electrocatalytic activity of the as-prepared materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI