MIM: A deep mixed residual method for solving high-order partial differential equations

双调和方程 偏微分方程 数学 残余物 应用数学 伽辽金法 有限元法 功能(生物学) 连接(主束) 平均加权残差法 数学分析 算法 边值问题 几何学 物理 热力学 生物 进化生物学
作者
Liyao Lyu,Zhen Zhang,Minxin Chen,Jingrun Chen
出处
期刊:Journal of Computational Physics [Elsevier]
卷期号:452: 110930-110930 被引量:48
标识
DOI:10.1016/j.jcp.2021.110930
摘要

In recent years, a significant amount of attention has been paid to solve partial differential equations (PDEs) by deep learning. For example, deep Galerkin method (DGM) uses the PDE residual in the least-squares sense as the loss function and a deep neural network (DNN) to approximate the PDE solution. In this work, we propose a deep mixed residual method (MIM) to solve PDEs with high-order derivatives. Notable examples include Poisson equation, Monge-Ampére equation, biharmonic equation, and Korteweg-de Vries equation. In MIM, we first rewrite a high-order PDE into a first-order system, very much in the same spirit as local discontinuous Galerkin method and mixed finite element method in classical numerical methods for PDEs. We then use the residual of the first-order system in the least-squares sense as the loss function, which is in close connection with least-squares finite element method. For aforementioned classical numerical methods, the choice of trial and test functions is important for stability and accuracy issues in many cases. MIM shares this property when DNNs are employed to approximate unknowns functions in the first-order system. In one case, we use nearly the same DNN to approximate all unknown functions and in the other case, we use totally different DNNs for different unknown functions. Numerous results of MIM with different loss functions and different choices of DNNs are given for four types of PDEs. In most cases, MIM provides better approximations (not only for high-order derivatives of the PDE solution but also for the PDE solution itself) than DGM with nearly the same DNN and the same execution time, sometimes by more than one order of magnitude. MIM with multiple DNNs often provides better approximations than MIM with only one DNN, sometimes by more than one order of magnitude. Numerical results also indicate interesting connections between MIM and classical numerical methods. Therefore, we expect MIM to open up a possibly systematic way to understand and improve deep learning for solving PDEs from the perspective of classical numerical analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
惜墨应助Suzzne采纳,获得10
2秒前
2秒前
炒栗子完成签到,获得积分20
3秒前
4秒前
炒栗子发布了新的文献求助80
8秒前
郑雨霏发布了新的文献求助10
8秒前
8秒前
9秒前
疯狂的含羞草完成签到,获得积分10
10秒前
11秒前
Cola完成签到,获得积分10
11秒前
11发布了新的文献求助10
12秒前
12秒前
14秒前
可爱的函函应助务实的宛采纳,获得10
14秒前
郑雨霏完成签到,获得积分10
14秒前
李剑鸿发布了新的文献求助50
16秒前
细心的抽屉完成签到,获得积分20
16秒前
SciGPT应助摆渡人采纳,获得10
16秒前
17秒前
粗犷的秋凌完成签到 ,获得积分10
19秒前
21秒前
21秒前
情怀应助炒栗子采纳,获得10
22秒前
CipherSage应助受伤的老头采纳,获得10
22秒前
23秒前
ydning33完成签到,获得积分10
24秒前
悬夜发布了新的文献求助10
25秒前
SciGPT应助科研通管家采纳,获得10
25秒前
完美世界应助科研通管家采纳,获得10
25秒前
bkagyin应助科研通管家采纳,获得10
25秒前
思源应助科研通管家采纳,获得10
25秒前
丘比特应助科研通管家采纳,获得10
25秒前
小马甲应助科研通管家采纳,获得10
26秒前
情怀应助科研通管家采纳,获得10
26秒前
从容芮应助科研通管家采纳,获得10
26秒前
26秒前
26秒前
从容芮应助科研通管家采纳,获得10
26秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139135
求助须知:如何正确求助?哪些是违规求助? 2790050
关于积分的说明 7793436
捐赠科研通 2446426
什么是DOI,文献DOI怎么找? 1301124
科研通“疑难数据库(出版商)”最低求助积分说明 626106
版权声明 601102