亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Physics-informed neural networks for phase-field method in two-phase flow

人工神经网络 物理 接口(物质) 流量(数学) 相(物质) 领域(数学) 非线性系统 两相流 应用数学 统计物理学 人工智能 机械 计算机科学 数学 量子力学 最大气泡压力法 气泡 纯数学
作者
Rundi Qiu,Renfang Huang,Yao Xiao,Jingzhu Wang,Zhen Zhang,Jie-shun Yue,Zhong Zeng,Yiwei Wang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:34 (5) 被引量:78
标识
DOI:10.1063/5.0091063
摘要

The complex flow modeling based on machine learning is becoming a promising way to describe multiphase fluid systems. This work demonstrates how a physics-informed neural network promotes the combination of traditional governing equations and advanced interface evolution equations without intricate algorithms. We develop physics-informed neural networks for the phase-field method (PF-PINNs) in two-dimensional immiscible incompressible two-phase flow. The Cahn–Hillard equation and Navier–Stokes equations are encoded directly into the residuals of a fully connected neural network. Compared with the traditional interface-capturing method, the phase-field model has a firm physical basis because it is based on the Ginzburg–Landau theory and conserves mass and energy. It also performs well in two-phase flow at the large density ratio. However, the high-order differential nonlinear term of the Cahn–Hilliard equation poses a great challenge for obtaining numerical solutions. Thus, in this work, we adopt neural networks to tackle the challenge by solving high-order derivate terms and capture the interface adaptively. To enhance the accuracy and efficiency of PF-PINNs, we use the time-marching strategy and the forced constraint of the density and viscosity. The PF-PINNs are tested by two cases for presenting the interface-capturing ability of PINNs and evaluating the accuracy of PF-PINNs at the large density ratio (up to 1000). The shape of the interface in both cases coincides well with the reference results, and the dynamic behavior of the second case is precisely captured. We also quantify the variations in the center of mass and increasing velocity over time for validation purposes. The results show that PF-PINNs exploit the automatic differentiation without sacrificing the high accuracy of the phase-field method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
瘦瘦乌龟完成签到 ,获得积分10
2秒前
swayqur应助典雅幻然采纳,获得10
2秒前
量子星尘发布了新的文献求助10
22秒前
45秒前
lsl发布了新的文献求助10
51秒前
58秒前
1分钟前
1分钟前
所所应助科研通管家采纳,获得10
1分钟前
joanna完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
2分钟前
2分钟前
大方的黑猫完成签到,获得积分10
2分钟前
研友_Lk9Y9Z发布了新的文献求助10
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
研友_Lk9Y9Z完成签到,获得积分10
3分钟前
顺顺完成签到 ,获得积分10
3分钟前
outlast完成签到,获得积分20
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
CHRIS发布了新的文献求助10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
烟花应助科研通管家采纳,获得30
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
小雨点完成签到 ,获得积分10
5分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015140
求助须知:如何正确求助?哪些是违规求助? 3555113
关于积分的说明 11317861
捐赠科研通 3288577
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887869
科研通“疑难数据库(出版商)”最低求助积分说明 811983