Physics-informed neural networks for phase-field method in two-phase flow

人工神经网络 物理 接口(物质) 流量(数学) 相(物质) 领域(数学) 非线性系统 两相流 应用数学 统计物理学 人工智能 机械 计算机科学 数学 量子力学 最大气泡压力法 气泡 纯数学
作者
Rundi Qiu,Renfang Huang,Yao Xiao,Jingzhu Wang,Zhen Zhang,Jie-shun Yue,Zhong Zeng,Yiwei Wang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:34 (5) 被引量:95
标识
DOI:10.1063/5.0091063
摘要

The complex flow modeling based on machine learning is becoming a promising way to describe multiphase fluid systems. This work demonstrates how a physics-informed neural network promotes the combination of traditional governing equations and advanced interface evolution equations without intricate algorithms. We develop physics-informed neural networks for the phase-field method (PF-PINNs) in two-dimensional immiscible incompressible two-phase flow. The Cahn–Hillard equation and Navier–Stokes equations are encoded directly into the residuals of a fully connected neural network. Compared with the traditional interface-capturing method, the phase-field model has a firm physical basis because it is based on the Ginzburg–Landau theory and conserves mass and energy. It also performs well in two-phase flow at the large density ratio. However, the high-order differential nonlinear term of the Cahn–Hilliard equation poses a great challenge for obtaining numerical solutions. Thus, in this work, we adopt neural networks to tackle the challenge by solving high-order derivate terms and capture the interface adaptively. To enhance the accuracy and efficiency of PF-PINNs, we use the time-marching strategy and the forced constraint of the density and viscosity. The PF-PINNs are tested by two cases for presenting the interface-capturing ability of PINNs and evaluating the accuracy of PF-PINNs at the large density ratio (up to 1000). The shape of the interface in both cases coincides well with the reference results, and the dynamic behavior of the second case is precisely captured. We also quantify the variations in the center of mass and increasing velocity over time for validation purposes. The results show that PF-PINNs exploit the automatic differentiation without sacrificing the high accuracy of the phase-field method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
douer完成签到,获得积分20
2秒前
我要住giao楼完成签到 ,获得积分10
4秒前
哈哈哈完成签到,获得积分10
7秒前
认真以蓝完成签到,获得积分10
8秒前
8秒前
英姑应助zhu采纳,获得10
8秒前
9秒前
10秒前
wanci应助张斯瑞采纳,获得10
10秒前
11秒前
aaa完成签到,获得积分10
12秒前
认真以蓝发布了新的文献求助10
13秒前
简单的南完成签到 ,获得积分10
14秒前
哈基米德应助尘屿采纳,获得20
15秒前
Xiaoxiao应助尘屿采纳,获得10
15秒前
15秒前
16秒前
姜茂才完成签到,获得积分10
17秒前
yiliu完成签到,获得积分10
18秒前
douer关注了科研通微信公众号
18秒前
胡萝卜发布了新的文献求助10
19秒前
锦安完成签到 ,获得积分10
19秒前
mmb发布了新的文献求助10
20秒前
22秒前
小巧的怜晴完成签到,获得积分10
22秒前
桐桐应助gaojun采纳,获得10
22秒前
zhujingyao完成签到,获得积分10
22秒前
乐只完成签到,获得积分10
23秒前
羊羔蓉完成签到,获得积分10
24秒前
小蘑菇应助胡萝卜采纳,获得10
24秒前
希望天下0贩的0应助三石采纳,获得10
25秒前
26秒前
尘屿完成签到,获得积分10
27秒前
深情安青应助羊羔蓉采纳,获得10
28秒前
cz111完成签到 ,获得积分10
29秒前
Csy发布了新的文献求助20
29秒前
天天呼的海角完成签到,获得积分10
29秒前
31秒前
啾啾zZ完成签到 ,获得积分10
31秒前
wwwddk发布了新的文献求助10
31秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5141836
求助须知:如何正确求助?哪些是违规求助? 4340200
关于积分的说明 13516718
捐赠科研通 4179944
什么是DOI,文献DOI怎么找? 2292128
邀请新用户注册赠送积分活动 1292796
关于科研通互助平台的介绍 1235275