Physics-informed neural networks for phase-field method in two-phase flow

人工神经网络 物理 接口(物质) 流量(数学) 相(物质) 领域(数学) 非线性系统 两相流 应用数学 统计物理学 人工智能 机械 计算机科学 数学 量子力学 最大气泡压力法 气泡 纯数学
作者
Rundi Qiu,Renfang Huang,Yao Xiao,Jingzhu Wang,Zhen Zhang,Jie-shun Yue,Zhong Zeng,Yiwei Wang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:34 (5) 被引量:63
标识
DOI:10.1063/5.0091063
摘要

The complex flow modeling based on machine learning is becoming a promising way to describe multiphase fluid systems. This work demonstrates how a physics-informed neural network promotes the combination of traditional governing equations and advanced interface evolution equations without intricate algorithms. We develop physics-informed neural networks for the phase-field method (PF-PINNs) in two-dimensional immiscible incompressible two-phase flow. The Cahn–Hillard equation and Navier–Stokes equations are encoded directly into the residuals of a fully connected neural network. Compared with the traditional interface-capturing method, the phase-field model has a firm physical basis because it is based on the Ginzburg–Landau theory and conserves mass and energy. It also performs well in two-phase flow at the large density ratio. However, the high-order differential nonlinear term of the Cahn–Hilliard equation poses a great challenge for obtaining numerical solutions. Thus, in this work, we adopt neural networks to tackle the challenge by solving high-order derivate terms and capture the interface adaptively. To enhance the accuracy and efficiency of PF-PINNs, we use the time-marching strategy and the forced constraint of the density and viscosity. The PF-PINNs are tested by two cases for presenting the interface-capturing ability of PINNs and evaluating the accuracy of PF-PINNs at the large density ratio (up to 1000). The shape of the interface in both cases coincides well with the reference results, and the dynamic behavior of the second case is precisely captured. We also quantify the variations in the center of mass and increasing velocity over time for validation purposes. The results show that PF-PINNs exploit the automatic differentiation without sacrificing the high accuracy of the phase-field method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
萧水白应助一天一篇采纳,获得10
3秒前
FashionBoy应助张萝卜采纳,获得10
3秒前
3秒前
搜集达人应助彭佳丽采纳,获得10
4秒前
无限一凤发布了新的文献求助10
4秒前
5秒前
bofu发布了新的文献求助10
6秒前
naturehome发布了新的文献求助10
6秒前
LZHWSND完成签到,获得积分10
7秒前
7秒前
8秒前
科研通AI2S应助ark861023采纳,获得10
8秒前
10秒前
共享精神应助优秀星星采纳,获得10
10秒前
11秒前
11秒前
onestepcloser完成签到 ,获得积分10
12秒前
把握当下完成签到,获得积分10
12秒前
bofu发布了新的文献求助10
12秒前
桃夭完成签到,获得积分20
13秒前
cc完成签到,获得积分10
13秒前
13秒前
13秒前
李健的小迷弟应助Xiexie采纳,获得30
14秒前
14秒前
wnw发布了新的文献求助10
15秒前
亮lll发布了新的文献求助10
16秒前
华仔应助Nick Green采纳,获得10
16秒前
桃夭发布了新的文献求助10
17秒前
17秒前
18秒前
爱科研的小吴完成签到 ,获得积分10
18秒前
能干的小刺猬完成签到,获得积分10
19秒前
bofu发布了新的文献求助10
19秒前
zqingqing发布了新的文献求助10
19秒前
优秀星星完成签到,获得积分10
20秒前
23秒前
小柯应助无限一凤采纳,获得10
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309669
求助须知:如何正确求助?哪些是违规求助? 2942933
关于积分的说明 8511870
捐赠科研通 2618027
什么是DOI,文献DOI怎么找? 1430770
科研通“疑难数据库(出版商)”最低求助积分说明 664273
邀请新用户注册赠送积分活动 649451