Autonomous navigation at unsignalized intersections: A coupled reinforcement learning and model predictive control approach

模型预测控制 强化学习 计算机科学 控制(管理) 环境科学 机器学习 人工智能
作者
Rolando Bautista-Montesano,Renato Galluzzi,Kangrui Ruan,Yongjie Fu,Xuan Di
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:139: 103662-103662 被引量:31
标识
DOI:10.1016/j.trc.2022.103662
摘要

This paper develops an integrated safety-enhanced reinforcement learning (RL) and model predictive control (MPC) framework for autonomous vehicles (AVs) to navigate unsignalized intersections. Researchers have extensively studied how AVs drive along highways. Nonetheless, how AVs navigate intersections in urban environments remains a challenging task due to the constant presence of moving road users, including turning vehicles, crossing or jaywalking pedestrians, and cyclists. AVs are thus required to learn and adapt to a dynamically evolving urban traffic environment. This paper proposes a design benchmark that allows AVs to sense the real-time traffic environment and perform path planning. The agent dynamically generates curves for feasible paths. The ego vehicle attempts to follow these paths under specific constraints. RL and MPC navigation algorithms run in parallel and are suitably selected to enhance ego vehicle safety. The ego AV is modeled with lateral and longitudinal dynamics and trained in a T-intersection using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm under various traffic scenarios. It is then tested on a straight road and a single or multi-lane intersections. All these experiments achieve desirable outcomes in terms of crash avoidance, driving efficiency, comfort, and tracking accuracy. The developed AV navigation system provides a design benchmark for an adaptive AV that can navigate unsignalized intersections.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
leo完成签到,获得积分10
1秒前
爆米花应助Certainty橙子采纳,获得10
1秒前
Lucas应助TIWOSS采纳,获得10
1秒前
chai发布了新的文献求助10
1秒前
脸脸完成签到,获得积分20
2秒前
xiaobai123456发布了新的文献求助10
2秒前
2秒前
乐观的名发布了新的文献求助10
2秒前
xueshu发布了新的文献求助50
2秒前
谢佳乐完成签到,获得积分10
2秒前
银正恩关注了科研通微信公众号
3秒前
月关发布了新的文献求助10
4秒前
leo发布了新的文献求助100
4秒前
4秒前
心灵美盼烟完成签到,获得积分10
4秒前
哈哈完成签到 ,获得积分10
4秒前
妍妈发布了新的文献求助10
4秒前
猪猪hero发布了新的文献求助10
5秒前
5秒前
123完成签到 ,获得积分10
5秒前
xu应助yy采纳,获得10
6秒前
滴滴滴发布了新的文献求助10
6秒前
猪漂漂发布了新的文献求助30
6秒前
独特的半莲完成签到,获得积分20
7秒前
洁净糖豆完成签到,获得积分10
7秒前
7秒前
所所应助snnnn采纳,获得10
7秒前
7秒前
你好完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
dkx完成签到 ,获得积分10
8秒前
原子完成签到,获得积分10
8秒前
平淡的画板完成签到,获得积分10
9秒前
9秒前
9秒前
11完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624579
求助须知:如何正确求助?哪些是违规求助? 4710376
关于积分的说明 14950345
捐赠科研通 4778512
什么是DOI,文献DOI怎么找? 2553318
邀请新用户注册赠送积分活动 1515240
关于科研通互助平台的介绍 1475577