Autonomous navigation at unsignalized intersections: A coupled reinforcement learning and model predictive control approach

模型预测控制 强化学习 计算机科学 控制(管理) 环境科学 机器学习 人工智能
作者
Rolando Bautista-Montesano,Renato Galluzzi,Kangrui Ruan,Yongjie Fu,Xuan Di
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:139: 103662-103662 被引量:31
标识
DOI:10.1016/j.trc.2022.103662
摘要

This paper develops an integrated safety-enhanced reinforcement learning (RL) and model predictive control (MPC) framework for autonomous vehicles (AVs) to navigate unsignalized intersections. Researchers have extensively studied how AVs drive along highways. Nonetheless, how AVs navigate intersections in urban environments remains a challenging task due to the constant presence of moving road users, including turning vehicles, crossing or jaywalking pedestrians, and cyclists. AVs are thus required to learn and adapt to a dynamically evolving urban traffic environment. This paper proposes a design benchmark that allows AVs to sense the real-time traffic environment and perform path planning. The agent dynamically generates curves for feasible paths. The ego vehicle attempts to follow these paths under specific constraints. RL and MPC navigation algorithms run in parallel and are suitably selected to enhance ego vehicle safety. The ego AV is modeled with lateral and longitudinal dynamics and trained in a T-intersection using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm under various traffic scenarios. It is then tested on a straight road and a single or multi-lane intersections. All these experiments achieve desirable outcomes in terms of crash avoidance, driving efficiency, comfort, and tracking accuracy. The developed AV navigation system provides a design benchmark for an adaptive AV that can navigate unsignalized intersections.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小白发布了新的文献求助10
1秒前
1秒前
大方百招完成签到,获得积分10
1秒前
2秒前
111完成签到,获得积分10
2秒前
赘婿应助Mr咸蛋黄采纳,获得10
5秒前
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
安安应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
打打应助科研通管家采纳,获得30
6秒前
虚幻友瑶应助科研通管家采纳,获得20
6秒前
orixero应助科研通管家采纳,获得10
6秒前
文静应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
6秒前
Akim应助科研通管家采纳,获得10
6秒前
情怀应助科研通管家采纳,获得10
6秒前
LL完成签到,获得积分10
6秒前
无花果应助科研通管家采纳,获得10
6秒前
zsyhcl应助科研通管家采纳,获得10
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
文静应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得30
6秒前
6秒前
打打应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
今后应助科研通管家采纳,获得10
7秒前
7秒前
无花果应助科研通管家采纳,获得10
7秒前
HK完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5304842
求助须知:如何正确求助?哪些是违规求助? 4451080
关于积分的说明 13850819
捐赠科研通 4338377
什么是DOI,文献DOI怎么找? 2381863
邀请新用户注册赠送积分活动 1376934
关于科研通互助平台的介绍 1344361