Autonomous navigation at unsignalized intersections: A coupled reinforcement learning and model predictive control approach

模型预测控制 强化学习 计算机科学 控制(管理) 环境科学 机器学习 人工智能
作者
Rolando Bautista-Montesano,Renato Galluzzi,Kangrui Ruan,Yongjie Fu,Xuan Di
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:139: 103662-103662 被引量:31
标识
DOI:10.1016/j.trc.2022.103662
摘要

This paper develops an integrated safety-enhanced reinforcement learning (RL) and model predictive control (MPC) framework for autonomous vehicles (AVs) to navigate unsignalized intersections. Researchers have extensively studied how AVs drive along highways. Nonetheless, how AVs navigate intersections in urban environments remains a challenging task due to the constant presence of moving road users, including turning vehicles, crossing or jaywalking pedestrians, and cyclists. AVs are thus required to learn and adapt to a dynamically evolving urban traffic environment. This paper proposes a design benchmark that allows AVs to sense the real-time traffic environment and perform path planning. The agent dynamically generates curves for feasible paths. The ego vehicle attempts to follow these paths under specific constraints. RL and MPC navigation algorithms run in parallel and are suitably selected to enhance ego vehicle safety. The ego AV is modeled with lateral and longitudinal dynamics and trained in a T-intersection using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm under various traffic scenarios. It is then tested on a straight road and a single or multi-lane intersections. All these experiments achieve desirable outcomes in terms of crash avoidance, driving efficiency, comfort, and tracking accuracy. The developed AV navigation system provides a design benchmark for an adaptive AV that can navigate unsignalized intersections.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
77发布了新的文献求助10
1秒前
1秒前
不卷心菜完成签到,获得积分10
1秒前
2秒前
DENG完成签到,获得积分10
2秒前
小谢发布了新的文献求助10
2秒前
2秒前
3秒前
SciGPT应助季节采纳,获得30
3秒前
我是老大应助2号采纳,获得10
4秒前
Wayne发布了新的文献求助10
4秒前
汉堡包应助优美紫槐采纳,获得10
4秒前
所所应助风淡了采纳,获得10
5秒前
5秒前
wai发布了新的文献求助10
5秒前
6秒前
寒冷向真完成签到,获得积分10
6秒前
雪米饼发布了新的文献求助20
6秒前
7秒前
QYH发布了新的文献求助10
7秒前
等待黎云发布了新的文献求助10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
Owen应助coollz采纳,获得10
10秒前
10秒前
11秒前
果粒橙橙子完成签到,获得积分10
11秒前
12秒前
早睡早起完成签到,获得积分10
14秒前
杏仁饼干发布了新的文献求助10
14秒前
15秒前
科目三应助fufu采纳,获得10
15秒前
何2发布了新的文献求助10
15秒前
Wayne完成签到,获得积分10
15秒前
16秒前
索多倍发布了新的文献求助10
16秒前
16秒前
dyf发布了新的文献求助10
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5712345
求助须知:如何正确求助?哪些是违规求助? 5209385
关于积分的说明 15267184
捐赠科研通 4864321
什么是DOI,文献DOI怎么找? 2611345
邀请新用户注册赠送积分活动 1561615
关于科研通互助平台的介绍 1518892