亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Application and comparison of multiple machine learning techniques for the calculation of laminar burning velocity for hydrogen-methane mixtures

层流 燃烧 天然气 甲烷 计算机科学 热力学 工艺工程 化学 工程类 物理 废物管理 物理化学 有机化学
作者
Sven Eckart,René Prieler,Christoph Hochenauer,Hartmut Krause
出处
期刊:Thermal science and engineering progress [Elsevier]
卷期号:32: 101306-101306 被引量:23
标识
DOI:10.1016/j.tsep.2022.101306
摘要

In the present discussion of transition the energy supply and sector coupling processes, hydrogen and hydrogen/natural gas mixtures will play an important role in future gas usage as gaseous energy carrier mainly natural gas is widely used in industrial combustion systems, combustion engines as well as domestic heating systems. Combustion properties of hydrogen differ completely from natural gas. Therefore, numerical modelling of combustion phenomena is an important task due to development and optimization of innovative combustion systems or for safety issues. In this area laminar burning velocity (LBV) is one of the most important physical properties of a flammable mixture. LBV is one of the parameters used for assessment and development of detailed chemical kinetic mechanisms and burners as well. The goal of this work is to develop models by using machine-learning algorithms for predicting laminar burning velocities of methane/hydrogen/air mixtures at different states. Development of the models is based on a large experimental data set with over 1400 data points collected from the literature after 2005. The models are developed in Python taking into account (i) generalized linear regression model (GLM), (ii) support vector machine (SVM), (iii) Random Forest (RF) and (iv) artificial neural network (ANN). The influence of the number of hidden layers and neurons per layer were investigated to find the best possible solution for an ANN. The performance of the developed models was evaluated with one widely used detailed chemical reaction mechanisms. Therefore the GRI 3.0 DRM was used for this purpose in the numerical simulations. The main advantage of developed models is the much shorter computational time compared to the solving procedures for detailed chemical reaction mechanism.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lixuebin完成签到 ,获得积分10
2秒前
wangyang发布了新的文献求助10
7秒前
8秒前
无私航空完成签到,获得积分10
17秒前
17秒前
gulmira发布了新的文献求助10
23秒前
26秒前
29秒前
可爱的你发布了新的文献求助60
34秒前
WW应助gulmira采纳,获得10
36秒前
46秒前
1分钟前
jason完成签到,获得积分10
1分钟前
1分钟前
jason发布了新的文献求助10
1分钟前
chiyudoubao发布了新的文献求助10
1分钟前
可爱的你完成签到,获得积分10
1分钟前
1分钟前
chiyudoubao完成签到,获得积分10
1分钟前
小二郎应助桃园奈奈露采纳,获得10
1分钟前
1分钟前
Hans完成签到,获得积分10
1分钟前
Glngar关注了科研通微信公众号
1分钟前
2分钟前
2分钟前
诚心的信封完成签到 ,获得积分10
2分钟前
decade发布了新的文献求助10
2分钟前
2分钟前
sunny完成签到,获得积分10
2分钟前
隐形曼青应助thousandlong采纳,获得10
2分钟前
2分钟前
2分钟前
thousandlong发布了新的文献求助10
2分钟前
豆腐干地方完成签到,获得积分10
2分钟前
3分钟前
搜集达人应助蝈蝈采纳,获得10
3分钟前
decade完成签到,获得积分20
3分钟前
3分钟前
蝈蝈发布了新的文献求助10
3分钟前
3分钟前
高分求助中
Sustainability in Tides Chemistry 1500
Handbook of the Mammals of the World – Volume 3: Primates 805
拟南芥模式识别受体参与调控抗病蛋白介导的ETI免疫反应的机制研究 550
Gerard de Lairesse : an artist between stage and studio 500
Digging and Dealing in Eighteenth-Century Rome 500
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3068019
求助须知:如何正确求助?哪些是违规求助? 2722010
关于积分的说明 7475939
捐赠科研通 2369097
什么是DOI,文献DOI怎么找? 1256116
科研通“疑难数据库(出版商)”最低求助积分说明 609454
版权声明 596795