Application and comparison of multiple machine learning techniques for the calculation of laminar burning velocity for hydrogen-methane mixtures

层流 燃烧 天然气 甲烷 计算机科学 热力学 工艺工程 化学 工程类 物理 废物管理 物理化学 有机化学
作者
Sven Eckart,René Prieler,Christoph Hochenauer,Hartmut Krause
出处
期刊:Thermal science and engineering progress [Elsevier]
卷期号:32: 101306-101306 被引量:23
标识
DOI:10.1016/j.tsep.2022.101306
摘要

In the present discussion of transition the energy supply and sector coupling processes, hydrogen and hydrogen/natural gas mixtures will play an important role in future gas usage as gaseous energy carrier mainly natural gas is widely used in industrial combustion systems, combustion engines as well as domestic heating systems. Combustion properties of hydrogen differ completely from natural gas. Therefore, numerical modelling of combustion phenomena is an important task due to development and optimization of innovative combustion systems or for safety issues. In this area laminar burning velocity (LBV) is one of the most important physical properties of a flammable mixture. LBV is one of the parameters used for assessment and development of detailed chemical kinetic mechanisms and burners as well. The goal of this work is to develop models by using machine-learning algorithms for predicting laminar burning velocities of methane/hydrogen/air mixtures at different states. Development of the models is based on a large experimental data set with over 1400 data points collected from the literature after 2005. The models are developed in Python taking into account (i) generalized linear regression model (GLM), (ii) support vector machine (SVM), (iii) Random Forest (RF) and (iv) artificial neural network (ANN). The influence of the number of hidden layers and neurons per layer were investigated to find the best possible solution for an ANN. The performance of the developed models was evaluated with one widely used detailed chemical reaction mechanisms. Therefore the GRI 3.0 DRM was used for this purpose in the numerical simulations. The main advantage of developed models is the much shorter computational time compared to the solving procedures for detailed chemical reaction mechanism.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
冷傲迎梦发布了新的文献求助10
1秒前
1秒前
Agernon应助晓军采纳,获得10
1秒前
小夭发布了新的文献求助10
2秒前
无聊的翠芙完成签到,获得积分10
2秒前
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
wjj发布了新的文献求助10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
彭于晏应助鱼与树采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得30
4秒前
Orange应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
xiuxiu_27发布了新的文献求助10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
猪猪hero发布了新的文献求助10
4秒前
4秒前
思源应助科研通管家采纳,获得10
4秒前
桐桐应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得30
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
剑兰先生应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
6秒前
6秒前
Gaoge发布了新的文献求助10
6秒前
kimoto完成签到 ,获得积分10
7秒前
Tsuki完成签到,获得积分10
7秒前
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678