Application and comparison of multiple machine learning techniques for the calculation of laminar burning velocity for hydrogen-methane mixtures

层流 燃烧 天然气 甲烷 计算机科学 热力学 工艺工程 化学 工程类 物理 废物管理 物理化学 有机化学
作者
Sven Eckart,René Prieler,Christoph Hochenauer,Hartmut Krause
出处
期刊:Thermal science and engineering progress [Elsevier BV]
卷期号:32: 101306-101306 被引量:23
标识
DOI:10.1016/j.tsep.2022.101306
摘要

In the present discussion of transition the energy supply and sector coupling processes, hydrogen and hydrogen/natural gas mixtures will play an important role in future gas usage as gaseous energy carrier mainly natural gas is widely used in industrial combustion systems, combustion engines as well as domestic heating systems. Combustion properties of hydrogen differ completely from natural gas. Therefore, numerical modelling of combustion phenomena is an important task due to development and optimization of innovative combustion systems or for safety issues. In this area laminar burning velocity (LBV) is one of the most important physical properties of a flammable mixture. LBV is one of the parameters used for assessment and development of detailed chemical kinetic mechanisms and burners as well. The goal of this work is to develop models by using machine-learning algorithms for predicting laminar burning velocities of methane/hydrogen/air mixtures at different states. Development of the models is based on a large experimental data set with over 1400 data points collected from the literature after 2005. The models are developed in Python taking into account (i) generalized linear regression model (GLM), (ii) support vector machine (SVM), (iii) Random Forest (RF) and (iv) artificial neural network (ANN). The influence of the number of hidden layers and neurons per layer were investigated to find the best possible solution for an ANN. The performance of the developed models was evaluated with one widely used detailed chemical reaction mechanisms. Therefore the GRI 3.0 DRM was used for this purpose in the numerical simulations. The main advantage of developed models is the much shorter computational time compared to the solving procedures for detailed chemical reaction mechanism.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李新颖发布了新的文献求助10
刚刚
1秒前
1秒前
2秒前
今后应助sunshine采纳,获得10
2秒前
全糖完成签到,获得积分10
2秒前
ANSON完成签到,获得积分20
4秒前
regent发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
刘一完成签到 ,获得积分10
5秒前
arabidopsis应助wxy采纳,获得10
6秒前
一区劳大完成签到 ,获得积分10
6秒前
LL发布了新的文献求助10
7秒前
8秒前
杨纨成完成签到 ,获得积分10
8秒前
Dadonnggua发布了新的文献求助10
8秒前
xs发布了新的文献求助10
9秒前
Kerry61完成签到,获得积分10
9秒前
小鱼奈子完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
科研鸟发布了新的文献求助10
11秒前
Bryan应助热心小松鼠采纳,获得10
13秒前
像风一样完成签到,获得积分10
13秒前
14秒前
司念者你发布了新的文献求助10
14秒前
15秒前
15秒前
彭于晏应助Kerry61采纳,获得10
17秒前
17秒前
琳琳发布了新的文献求助10
18秒前
柏林寒冬应助莓莓MM采纳,获得10
18秒前
科研通AI2S应助热心冷亦采纳,获得10
18秒前
劣根完成签到,获得积分10
20秒前
可爱的函函应助李新颖采纳,获得10
20秒前
Bryan应助热心小松鼠采纳,获得10
20秒前
田様应助Dadonnggua采纳,获得10
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966796
求助须知:如何正确求助?哪些是违规求助? 3512322
关于积分的说明 11162614
捐赠科研通 3247199
什么是DOI,文献DOI怎么找? 1793730
邀请新用户注册赠送积分活动 874602
科研通“疑难数据库(出版商)”最低求助积分说明 804432