Predicting the Stone-Free Status of Percutaneous Nephrolithotomy With the Machine Learning System: Comparative Analysis With Guy’s Stone Score and the S.T.O.N.E Score System

经皮肾镜取石术 接收机工作特性 朴素贝叶斯分类器 逻辑回归 支持向量机 肾结石 人工智能 Lasso(编程语言) 医学 机器学习 曲线下面积 数学 外科 内科学 计算机科学 经皮 万维网
作者
Hua-Lu Zhao,Wanling Li,Junsheng Li,Li Li,Hang Wang,Jianming Guo
出处
期刊:Frontiers in Molecular Biosciences [Frontiers Media SA]
卷期号:9 被引量:6
标识
DOI:10.3389/fmolb.2022.880291
摘要

Purpose: The aim of the study was to use machine learning methods (MLMs) to predict the stone-free status after percutaneous nephrolithotomy (PCNL). We compared the performance of this system with Guy’s stone score and the S.T.O.N.E score system. Materials and Methods: Data from 222 patients (90 females, 41%) who underwent PCNL at our center were used. Twenty-six parameters, including individual variables, renal and stone factors, and surgical factors were used as input data for MLMs. We evaluated the efficacy of four different techniques: Lasso-logistic (LL), random forest (RF), support vector machine (SVM), and Naive Bayes. The model performance was evaluated using the area under the curve (AUC) and compared with that of Guy’s stone score and the S.T.O.N.E score system. Results: The overall stone-free rate was 50% (111/222). To predict the stone-free status, all receiver operating characteristic curves of the four MLMs were above the curve for Guy’s stone score. The AUCs of LL, RF, SVM, and Naive Bayes were 0.879, 0.803, 0.818, and 0.803, respectively. These values were higher than the AUC of Guy’s score system, 0.800. The accuracies of the MLMs (0.803% to 0.818%) were also superior to the S.T.O.N.E score system (0.788%). Among the MLMs, Lasso-logistic showed the most favorable AUC. Conclusion: Machine learning methods can predict the stone-free rate with AUCs not inferior to those of Guy’s stone score and the S.T.O.N.E score system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
犹豫觅翠完成签到,获得积分10
1秒前
Jing发布了新的文献求助30
1秒前
1秒前
延胡索发布了新的文献求助10
2秒前
缥缈的凝海完成签到,获得积分10
3秒前
3秒前
4秒前
pumcerzj完成签到 ,获得积分10
4秒前
飘逸问兰发布了新的文献求助10
6秒前
笨笨雨莲发布了新的文献求助10
6秒前
6秒前
Min完成签到,获得积分10
7秒前
Yasmine完成签到 ,获得积分10
7秒前
田様应助洁洁酱采纳,获得10
7秒前
7秒前
orixero应助勤奋的熊猫采纳,获得10
8秒前
充电宝应助酿雪未成采纳,获得10
8秒前
哦哟发布了新的文献求助10
8秒前
lalala应助延胡索采纳,获得20
9秒前
9秒前
11秒前
沈言应助小糖豆采纳,获得10
12秒前
juanjuan发布了新的文献求助10
13秒前
ngg发布了新的文献求助10
14秒前
RPG完成签到,获得积分10
16秒前
18秒前
科研小白完成签到,获得积分10
18秒前
you完成签到,获得积分10
19秒前
情怀应助dominate采纳,获得10
19秒前
英俊的铭应助酷酷一笑采纳,获得10
20秒前
上官若男应助哦哟采纳,获得80
20秒前
柠、完成签到,获得积分10
22秒前
快乐123完成签到,获得积分10
23秒前
23秒前
24秒前
24秒前
上官若男应助小嘎采纳,获得10
24秒前
快乐123发布了新的文献求助10
25秒前
26秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309982
求助须知:如何正确求助?哪些是违规求助? 2943089
关于积分的说明 8512665
捐赠科研通 2618199
什么是DOI,文献DOI怎么找? 1430922
科研通“疑难数据库(出版商)”最低求助积分说明 664324
邀请新用户注册赠送积分活动 649490