TSGB: Target-Selective Gradient Backprop for Probing CNN Visual Saliency

计算机科学 帕斯卡(单位) 人工智能 卷积神经网络 光学(聚焦) 深度学习 模式识别(心理学) 显著性图 图像(数学) 计算机视觉 光学 物理 程序设计语言
作者
Lin Cheng,Pengfei Fang,Yanjie Liang,Liao Yuan Zhang,Chunhua Shen,Hanzi Wang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 2529-2540 被引量:5
标识
DOI:10.1109/tip.2022.3157149
摘要

The explanation for deep neural networks has drawn extensive attention in the deep learning community over the past few years. In this work, we study the visual saliency, a.k.a. visual explanation, to interpret convolutional neural networks. Compared to iteration based saliency methods, single backward pass based saliency methods benefit from faster speed, and they are widely used in downstream visual tasks. Thus, we focus on single backward pass based methods. However, existing methods in this category struggle to successfully produce fine-grained saliency maps concentrating on specific target classes. That said, producing faithful saliency maps satisfying both target-selectiveness and fine-grainedness using a single backward pass is a challenging problem in the field. To mitigate this problem, we revisit the gradient flow inside the network, and find that the entangled semantics and original weights may disturb the propagation of target-relevant saliency. Inspired by those observations, we propose a novel visual saliency method, termed Target-Selective Gradient Backprop (TSGB), which leverages rectification operations to effectively emphasize target classes and further efficiently propagate the saliency to the image space, thereby generating target-selective and fine-grained saliency maps. The proposed TSGB consists of two components, namely, TSGB-Conv and TSGB-FC, which rectify the gradients for convolutional layers and fully-connected layers, respectively. Extensive qualitative and quantitative experiments on the ImageNet and Pascal VOC datasets show that the proposed method achieves more accurate and reliable results than the other competitive methods. Code is available at https://github.com/123fxdx/CNNvisualizationTSGB.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坦率的傲芙完成签到,获得积分10
刚刚
舒心如凡完成签到,获得积分10
1秒前
过时的不评完成签到,获得积分10
1秒前
Moscrol发布了新的文献求助10
1秒前
七叶花开发布了新的文献求助10
2秒前
led完成签到,获得积分10
2秒前
2秒前
一只鱼的故事完成签到,获得积分10
2秒前
整挺好完成签到,获得积分10
3秒前
丘比特应助我是哑巴采纳,获得10
3秒前
jwj发布了新的文献求助100
3秒前
小胡完成签到,获得积分10
4秒前
雷梦芝完成签到,获得积分10
4秒前
4秒前
Kiki发布了新的文献求助10
5秒前
Crazy_Runner发布了新的文献求助10
5秒前
yoyo完成签到 ,获得积分10
6秒前
英姑应助lanshuitai采纳,获得10
6秒前
caffeine应助momo采纳,获得10
6秒前
晓晓完成签到 ,获得积分10
7秒前
威威完成签到,获得积分10
7秒前
ljkshr完成签到,获得积分10
7秒前
怪叔叔发布了新的文献求助10
7秒前
小马甲应助活泼的问夏采纳,获得10
7秒前
eager完成签到 ,获得积分10
7秒前
8秒前
自信念云发布了新的文献求助10
8秒前
七叶花开完成签到,获得积分10
9秒前
Avalon发布了新的文献求助10
9秒前
happy关注了科研通微信公众号
10秒前
liu完成签到,获得积分10
10秒前
子车茗应助biu我你开心吗采纳,获得10
10秒前
YWang发布了新的文献求助10
11秒前
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
所所应助科研通管家采纳,获得10
11秒前
11秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167791
求助须知:如何正确求助?哪些是违规求助? 2819164
关于积分的说明 7925456
捐赠科研通 2479083
什么是DOI,文献DOI怎么找? 1320632
科研通“疑难数据库(出版商)”最低求助积分说明 632856
版权声明 602443