An algorithm selection approach for the flexible job shop scheduling problem: Choosing constraint programming solvers through machine learning

计算机科学 约束规划 作业车间调度 数学优化 调度(生产过程) 选择(遗传算法) 流水车间调度 工作车间 人工智能 数学 随机规划 地铁列车时刻表 操作系统
作者
David Müller,Marcus Müller,Dominik Kreß,Erwin Pesch
出处
期刊:European Journal of Operational Research [Elsevier]
卷期号:302 (3): 874-891 被引量:31
标识
DOI:10.1016/j.ejor.2022.01.034
摘要

• We consider the scheduling of flexible job shops to minimize the makespan. • A computational study benchmarks various constraint programming solvers. • The solvers by IBM and Google show a complementary performance. • Algorithm selectors that automatically select a promising solver are developed. • The selectors use machine learning techniques and outperform using a single solver. Constraint programming solvers are known to perform remarkably well for most scheduling problems. However, when comparing the performance of different available solvers, there is usually no clear winner over all relevant problem instances. This gives rise to the question of how to select a promising solver when knowing the concrete instance to be solved. In this article, we aim to provide first insights into this question for the flexible job shop scheduling problem. We investigate relative performance differences among five constraint programming solvers on problem instances taken from the literature as well as randomly generated problem instances. These solvers include commercial and non-commercial software and represent the state-of-the-art as identified in the relevant literature. We find that two solvers, the IBM ILOG CPLEX CP Optimizer and Google’s OR-Tools, outperform alternative solvers. These two solvers show complementary strengths regarding their ability to determine provably optimal solutions within practically reasonable time limits and their ability to quickly determine high quality feasible solutions across different test instances. Hence, we leverage the resulting performance complementarity by proposing algorithm selection approaches that predict the best solver for a given problem instance based on instance features or parameters. The approaches are based on two machine learning techniques, decision trees and deep neural networks, in various variants. In a computational study, we analyze the performance of the resulting algorithm selection models and show that our approaches outperform the use of a single solver and should thus be considered as a relevant tool by decision makers in practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FangyingTang完成签到 ,获得积分10
刚刚
giao完成签到,获得积分10
1秒前
814791097完成签到,获得积分10
1秒前
8R60d8应助一人一城采纳,获得10
1秒前
2秒前
南国完成签到,获得积分10
2秒前
东华帝君完成签到,获得积分10
2秒前
quCC完成签到,获得积分10
2秒前
聪明的灵寒完成签到 ,获得积分10
3秒前
光之战士完成签到 ,获得积分10
3秒前
4秒前
粥可温完成签到,获得积分10
4秒前
十四完成签到 ,获得积分10
4秒前
大海很蓝完成签到 ,获得积分10
4秒前
科研通AI2S应助一一采纳,获得10
5秒前
6秒前
小摩尔完成签到 ,获得积分10
6秒前
cui123完成签到 ,获得积分10
6秒前
利莫里亚发布了新的文献求助10
7秒前
wen完成签到,获得积分10
7秒前
ding完成签到,获得积分10
7秒前
撒啊完成签到,获得积分10
7秒前
fay1987完成签到,获得积分10
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
8秒前
vvwwvv完成签到 ,获得积分10
8秒前
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
萌萌许应助科研通管家采纳,获得10
8秒前
8秒前
Aganlin发布了新的文献求助30
9秒前
9秒前
9秒前
简单完成签到,获得积分10
9秒前
兴奋如松完成签到,获得积分20
10秒前
优雅的纸鹤应助粥可温采纳,获得10
10秒前
宋芝恬完成签到,获得积分10
10秒前
科研岳完成签到,获得积分10
11秒前
cd发布了新的文献求助10
12秒前
阔达的太阳完成签到,获得积分10
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3450572
求助须知:如何正确求助?哪些是违规求助? 3046089
关于积分的说明 9004332
捐赠科研通 2734767
什么是DOI,文献DOI怎么找? 1500127
科研通“疑难数据库(出版商)”最低求助积分说明 693369
邀请新用户注册赠送积分活动 691542