AnoGLA: An efficient scheme to improve network anomaly detection

计算机科学 异常检测 稳健性(进化) 利用 数据挖掘 网络安全 图形 入侵检测系统 方案(数学) 理论计算机科学 计算机安全 数学分析 生物化学 化学 数学 基因
作者
Qingfeng Ding,Jinguo Li
出处
期刊:Journal of information security and applications [Elsevier BV]
卷期号:66: 103149-103149 被引量:2
标识
DOI:10.1016/j.jisa.2022.103149
摘要

With increasingly cyber-attacks and intrusion techniques, the threat of network security has become more and more serious. However, existing solutions are no longer sufficient in terms of accuracy as attacks continue to grow in quantity and complexity. Prior methods mainly focused on the application of deep learning techniques to analyze data changes in traffic flow. The cunning Cyber-attacks cannot be detected because some advanced attack techniques can conceal attacks and make them might seem innocuous in statistics. At the same time, traditional models only concentrate on the statistics of traffic sent by individual hosts, so the potential relationships of communication patterns in network traffic might be ignored. It makes these solutions are not competent for dealing with the various uncertainty in network traffic. In this paper, we propose an efficient anomaly detection approach, called AnoGLA, which considering the complex communication patterns between network structure and node properties. To mine the hidden relationship between network traffic, we built graph structured data in network traffic and exploits graph convolution network (GCN) for modeling. And we also combine long short-term memory network (LSTM) with Attention mechanism to extract the change information of the graph at different times. The effectiveness and robustness of proposed method are evaluated on two real-world datasets. The experiment results indicate that our scheme can effectively detect anomaly flow and outperforms the previous ones in network anomaly detection tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助132采纳,获得10
1秒前
77发布了新的文献求助10
1秒前
Yvette发布了新的文献求助20
1秒前
fanbuxiiii完成签到,获得积分10
2秒前
学术小白完成签到,获得积分10
2秒前
小土豆完成签到,获得积分10
2秒前
3秒前
aqiuyuehe发布了新的文献求助160
3秒前
大胆嘞完成签到 ,获得积分10
4秒前
香蕉觅云应助无望幽月采纳,获得10
4秒前
科研天才完成签到,获得积分10
4秒前
踏实的南琴完成签到 ,获得积分10
4秒前
yoko完成签到,获得积分10
4秒前
小白发布了新的文献求助10
5秒前
zwy109发布了新的文献求助10
5秒前
6秒前
英姑应助123采纳,获得10
7秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
Lucas应助2jz采纳,获得10
8秒前
小二郎应助YY采纳,获得10
8秒前
8秒前
8秒前
9秒前
9秒前
杨小小完成签到,获得积分10
10秒前
张磊发布了新的文献求助10
10秒前
CodeCraft应助pcy采纳,获得10
10秒前
不争馒头争口气完成签到,获得积分10
10秒前
阿怪发布了新的文献求助10
11秒前
黑黑完成签到,获得积分20
11秒前
12秒前
精明的书白完成签到,获得积分10
12秒前
失眠的珩发布了新的文献求助10
12秒前
13秒前
tonyfountain发布了新的文献求助10
13秒前
13秒前
JamesPei应助seven采纳,获得10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4602889
求助须知:如何正确求助?哪些是违规求助? 4011856
关于积分的说明 12420674
捐赠科研通 3692191
什么是DOI,文献DOI怎么找? 2035504
邀请新用户注册赠送积分活动 1068692
科研通“疑难数据库(出版商)”最低求助积分说明 953208