AnoGLA: An efficient scheme to improve network anomaly detection

计算机科学 异常检测 稳健性(进化) 利用 数据挖掘 网络安全 图形 入侵检测系统 方案(数学) 理论计算机科学 计算机安全 数学分析 生物化学 化学 数学 基因
作者
Qingfeng Ding,Jinguo Li
出处
期刊:Journal of information security and applications [Elsevier]
卷期号:66: 103149-103149 被引量:2
标识
DOI:10.1016/j.jisa.2022.103149
摘要

With increasingly cyber-attacks and intrusion techniques, the threat of network security has become more and more serious. However, existing solutions are no longer sufficient in terms of accuracy as attacks continue to grow in quantity and complexity. Prior methods mainly focused on the application of deep learning techniques to analyze data changes in traffic flow. The cunning Cyber-attacks cannot be detected because some advanced attack techniques can conceal attacks and make them might seem innocuous in statistics. At the same time, traditional models only concentrate on the statistics of traffic sent by individual hosts, so the potential relationships of communication patterns in network traffic might be ignored. It makes these solutions are not competent for dealing with the various uncertainty in network traffic. In this paper, we propose an efficient anomaly detection approach, called AnoGLA, which considering the complex communication patterns between network structure and node properties. To mine the hidden relationship between network traffic, we built graph structured data in network traffic and exploits graph convolution network (GCN) for modeling. And we also combine long short-term memory network (LSTM) with Attention mechanism to extract the change information of the graph at different times. The effectiveness and robustness of proposed method are evaluated on two real-world datasets. The experiment results indicate that our scheme can effectively detect anomaly flow and outperforms the previous ones in network anomaly detection tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷路的丁真完成签到,获得积分10
刚刚
xuhaohao发布了新的文献求助30
刚刚
勤劳的星月完成签到 ,获得积分10
刚刚
aheng发布了新的文献求助10
刚刚
李健应助肖雪依采纳,获得10
刚刚
刚刚
别吃我的鱼完成签到,获得积分10
刚刚
1秒前
赵子曰发布了新的文献求助10
1秒前
潇潇洒洒发布了新的文献求助10
1秒前
3秒前
西门吹雪9527完成签到,获得积分10
4秒前
Winnie完成签到 ,获得积分10
6秒前
7秒前
大个应助暴躁的信封采纳,获得10
10秒前
小木完成签到,获得积分10
11秒前
11秒前
12秒前
briliian发布了新的文献求助10
12秒前
语亦菲扬921完成签到,获得积分10
14秒前
SUPERDOUBLE完成签到,获得积分10
14秒前
14秒前
ZZDL发布了新的文献求助10
16秒前
Ava应助LVVVB采纳,获得10
17秒前
lxcy0612完成签到,获得积分10
17秒前
17秒前
SUPERDOUBLE发布了新的文献求助10
18秒前
Lqiang完成签到,获得积分10
18秒前
19秒前
19秒前
Singularity应助科研通管家采纳,获得10
20秒前
乐乐应助科研通管家采纳,获得10
20秒前
小牛应助科研通管家采纳,获得10
21秒前
丘比特应助科研通管家采纳,获得10
21秒前
Singularity应助科研通管家采纳,获得10
21秒前
大模型应助科研通管家采纳,获得10
21秒前
Lucas应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
领导范儿应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146272
求助须知:如何正确求助?哪些是违规求助? 2797641
关于积分的说明 7825012
捐赠科研通 2454032
什么是DOI,文献DOI怎么找? 1305957
科研通“疑难数据库(出版商)”最低求助积分说明 627630
版权声明 601503