Discovery of Cyclic Peptide Binders from Chemically Constrained Yeast Display Libraries

噬菌体展示 酵母 肽库 环肽 平移(音频) 定向进化 单元格排序 组合化学 酿酒酵母 化学 生物化学 亲和力成熟 突变体 计算生物学 肽序列 生物 细胞 基因 古生物学 缩放 镜头(地质)
作者
Kaitlyn Bacon,Stefano Menegatti,Balaji M. Rao
出处
期刊:Methods in molecular biology 卷期号:: 387-415
标识
DOI:10.1007/978-1-0716-2285-8_20
摘要

Cyclic peptides with engineered protein-binding activity have great potential as therapeutic and diagnostic reagents owing to their favorable properties, including high affinity and selectivity. Cyclic peptide binders have generally been isolated from phage display combinatorial libraries utilizing panning based selections. As an alternative, we have developed a yeast surface display platform to identify and characterize cyclic peptide binders from genetically encoded combinatorial libraries. Through a combination of magnetic selection and fluorescence-activated cell sorting (FACS), high-affinity cyclic peptide binders can be efficiently isolated from yeast display libraries. In this platform, linear peptide precursors are expressed as yeast surface fusions. To achieve cyclization of the linear precursors, the cells are incubated with disuccinimidyl glutarate, which crosslinks amine groups within the displayed linear peptide sequence. Here, we detail protocols for cyclizing linear peptides expressed as yeast surface fusions. We also discuss how to synthesize a yeast display library of linear peptide precursors. Subsequently, we provide suggestions on how to utilize magnetic selections and FACS to isolate cyclic peptide binders for target proteins of interest from a peptide combinatorial library. Lastly, we detail how yeast surface displayed cyclic peptides can be used to obtain efficient estimates of binding affinity, eliminating the need for chemically synthesized peptides when performing mutant characterization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孝铮发布了新的文献求助10
刚刚
jz完成签到,获得积分10
刚刚
韩乐乐完成签到,获得积分10
1秒前
ohooo完成签到,获得积分20
2秒前
所所应助君恪采纳,获得10
3秒前
小人物完成签到,获得积分20
4秒前
ohooo发布了新的文献求助10
4秒前
754完成签到,获得积分10
5秒前
GG小丁同学完成签到,获得积分10
7秒前
至此今生完成签到,获得积分20
7秒前
乐乐应助孝铮采纳,获得10
8秒前
wang发布了新的文献求助10
8秒前
9秒前
老肖应助幸福大白采纳,获得10
10秒前
11秒前
深情安青应助林夕采纳,获得10
11秒前
泡芙完成签到,获得积分10
14秒前
16秒前
17秒前
19秒前
20秒前
今后应助ll采纳,获得10
21秒前
CodeCraft应助平常的伊采纳,获得10
21秒前
SGOM完成签到,获得积分10
21秒前
22秒前
Owen应助研友_8y2G0L采纳,获得10
23秒前
落后的觅松完成签到,获得积分10
23秒前
24秒前
24秒前
FashionBoy应助科研通管家采纳,获得10
25秒前
英俊的铭应助科研通管家采纳,获得20
25秒前
25秒前
汉堡包应助科研通管家采纳,获得10
26秒前
香蕉觅云应助科研通管家采纳,获得10
26秒前
SciGPT应助科研通管家采纳,获得10
26秒前
FashionBoy应助科研通管家采纳,获得10
26秒前
浅尝离白应助科研通管家采纳,获得30
26秒前
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
27秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136744
求助须知:如何正确求助?哪些是违规求助? 2787759
关于积分的说明 7783069
捐赠科研通 2443822
什么是DOI,文献DOI怎么找? 1299439
科研通“疑难数据库(出版商)”最低求助积分说明 625457
版权声明 600954