Special issue “The advance of solid tumor research in China”: Prognosis prediction for stage II colorectal cancer by fusing computed tomography radiomics and deep‐learning features of primary lesions and peripheral lymph nodes

无线电技术 医学 一致性 阶段(地层学) 结直肠癌 深度学习 人工智能 放射科 卷积神经网络 癌症 内科学 肿瘤科 计算机科学 生物 古生物学
作者
Menglei Li,Jing Gong,Yichao Bao,Dan Huang,Junjie Peng,Tong Tong
出处
期刊:International Journal of Cancer [Wiley]
卷期号:152 (1): 31-41 被引量:12
标识
DOI:10.1002/ijc.34053
摘要

Abstract Currently, the prognosis assessment of stage II colorectal cancer (CRC) remains a difficult clinical problem; therefore, more accurate prognostic predictors must be developed. In our study, we developed a prognostic prediction model for stage II CRC by fusing radiomics and deep‐learning (DL) features of primary lesions and peripheral lymph nodes (LNs) in computed tomography (CT) scans. First, two CT radiomics models were built using primary lesion and LN image features. Subsequently, an information fusion method was used to build a fusion radiomics model by combining the tumor and LN image features. Furthermore, a transfer learning method was applied to build a deep convolutional neural network (CNN) model. Finally, the prediction scores generated by the radiomics and CNN models were fused to improve the prognosis prediction performance. The disease‐free survival (DFS) and overall survival (OS) prediction areas under the curves (AUCs) generated by the fusion model improved to 0.76 ± 0.08 and 0.91 ± 0.05, respectively. These were significantly higher than the AUCs generated by the models using the individual CT radiomics and deep image features. Applying the survival analysis method, the DFS and OS fusion models yielded concordance index (C‐index) values of 0.73 and 0.9, respectively. Hence, the combined model exhibited good predictive efficacy; therefore, it could be used for the accurate assessment of the prognosis of stage II CRC patients. Moreover, it could be used to screen out high‐risk patients with poor prognoses, and assist in the formulation of clinical treatment decisions in a timely manner to achieve precision medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhangyu哥完成签到,获得积分10
刚刚
十二平均律完成签到,获得积分10
1秒前
王嘉怡完成签到,获得积分10
1秒前
热情无心发布了新的文献求助10
1秒前
子不语发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
爆米花应助wyby采纳,获得10
2秒前
利于蓄力发布了新的文献求助10
2秒前
2秒前
3秒前
郭敬一完成签到,获得积分20
3秒前
3秒前
jiayoua发布了新的文献求助10
4秒前
Orange应助开心的火龙果采纳,获得10
4秒前
阿花阿花完成签到,获得积分10
4秒前
4秒前
科研通AI5应助肚子饿扁了采纳,获得10
5秒前
5秒前
yuanping-Zhou发布了新的文献求助10
5秒前
5秒前
大佛老爷完成签到,获得积分10
5秒前
antinomy完成签到,获得积分10
5秒前
可耐的冰萍完成签到,获得积分10
5秒前
大方易巧完成签到,获得积分10
6秒前
today完成签到 ,获得积分10
6秒前
顾矜应助gustavo采纳,获得10
7秒前
田様应助学习采纳,获得10
7秒前
7秒前
7秒前
ynn完成签到,获得积分10
7秒前
7秒前
7秒前
半拉馒头发布了新的文献求助10
7秒前
8秒前
Zx_1993应助Mxue采纳,获得10
8秒前
xmf发布了新的文献求助10
8秒前
执着烧鹅发布了新的文献求助10
9秒前
ZZzz完成签到,获得积分10
9秒前
soong给soong的求助进行了留言
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5072243
求助须知:如何正确求助?哪些是违规求助? 4292649
关于积分的说明 13375474
捐赠科研通 4113748
什么是DOI,文献DOI怎么找? 2252604
邀请新用户注册赠送积分活动 1257445
关于科研通互助平台的介绍 1190230