Special issue “The advance of solid tumor research in China”: Prognosis prediction for stage II colorectal cancer by fusing computed tomography radiomics and deep‐learning features of primary lesions and peripheral lymph nodes

无线电技术 医学 一致性 阶段(地层学) 结直肠癌 深度学习 人工智能 放射科 卷积神经网络 癌症 内科学 肿瘤科 计算机科学 生物 古生物学
作者
Menglei Li,Jing Gong,Yichao Bao,Dan Huang,Junjie Peng,Tong Tong
出处
期刊:International Journal of Cancer [Wiley]
卷期号:152 (1): 31-41 被引量:8
标识
DOI:10.1002/ijc.34053
摘要

Abstract Currently, the prognosis assessment of stage II colorectal cancer (CRC) remains a difficult clinical problem; therefore, more accurate prognostic predictors must be developed. In our study, we developed a prognostic prediction model for stage II CRC by fusing radiomics and deep‐learning (DL) features of primary lesions and peripheral lymph nodes (LNs) in computed tomography (CT) scans. First, two CT radiomics models were built using primary lesion and LN image features. Subsequently, an information fusion method was used to build a fusion radiomics model by combining the tumor and LN image features. Furthermore, a transfer learning method was applied to build a deep convolutional neural network (CNN) model. Finally, the prediction scores generated by the radiomics and CNN models were fused to improve the prognosis prediction performance. The disease‐free survival (DFS) and overall survival (OS) prediction areas under the curves (AUCs) generated by the fusion model improved to 0.76 ± 0.08 and 0.91 ± 0.05, respectively. These were significantly higher than the AUCs generated by the models using the individual CT radiomics and deep image features. Applying the survival analysis method, the DFS and OS fusion models yielded concordance index (C‐index) values of 0.73 and 0.9, respectively. Hence, the combined model exhibited good predictive efficacy; therefore, it could be used for the accurate assessment of the prognosis of stage II CRC patients. Moreover, it could be used to screen out high‐risk patients with poor prognoses, and assist in the formulation of clinical treatment decisions in a timely manner to achieve precision medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yry完成签到,获得积分10
刚刚
刚刚
尊敬飞丹完成签到,获得积分10
1秒前
3秒前
djbj2022发布了新的文献求助10
4秒前
4秒前
yoru16发布了新的文献求助10
4秒前
CipherSage应助科科采纳,获得10
6秒前
廖程完成签到 ,获得积分10
6秒前
LUCKY发布了新的文献求助10
7秒前
7秒前
元谷雪应助句号采纳,获得10
7秒前
wanci应助zhangnan采纳,获得10
8秒前
8秒前
满当当完成签到,获得积分10
9秒前
heyan完成签到,获得积分10
10秒前
竹筏过海应助铠甲勇士采纳,获得30
11秒前
hamzhang0426发布了新的文献求助10
12秒前
13秒前
我要赶快毕业完成签到,获得积分10
13秒前
16秒前
淙淙柔水完成签到,获得积分0
16秒前
fox199753206完成签到,获得积分10
17秒前
17秒前
爆米花应助fpbovo采纳,获得10
17秒前
18秒前
lemon完成签到,获得积分10
19秒前
酷酷发布了新的文献求助10
19秒前
20秒前
ding应助曾经厉采纳,获得10
20秒前
21秒前
碎碎念发布了新的文献求助30
21秒前
13134发布了新的文献求助10
22秒前
Akim应助我是張寜啊采纳,获得10
22秒前
丘比特应助顺心绮兰采纳,获得30
23秒前
木木完成签到,获得积分10
23秒前
Yuciyy完成签到,获得积分10
23秒前
脑洞疼应助HHTTY采纳,获得10
23秒前
Kabutack完成签到,获得积分10
24秒前
元谷雪应助横A采纳,获得10
24秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139963
求助须知:如何正确求助?哪些是违规求助? 2790878
关于积分的说明 7796853
捐赠科研通 2447242
什么是DOI,文献DOI怎么找? 1301754
科研通“疑难数据库(出版商)”最低求助积分说明 626336
版权声明 601194