Special issue “The advance of solid tumor research in China”: Prognosis prediction for stage II colorectal cancer by fusing computed tomography radiomics and deep‐learning features of primary lesions and peripheral lymph nodes

无线电技术 医学 一致性 阶段(地层学) 结直肠癌 深度学习 人工智能 放射科 卷积神经网络 癌症 内科学 肿瘤科 计算机科学 生物 古生物学
作者
Menglei Li,Jing Gong,Yichao Bao,Dan Huang,Junjie Peng,Tong Tong
出处
期刊:International Journal of Cancer [Wiley]
卷期号:152 (1): 31-41 被引量:12
标识
DOI:10.1002/ijc.34053
摘要

Abstract Currently, the prognosis assessment of stage II colorectal cancer (CRC) remains a difficult clinical problem; therefore, more accurate prognostic predictors must be developed. In our study, we developed a prognostic prediction model for stage II CRC by fusing radiomics and deep‐learning (DL) features of primary lesions and peripheral lymph nodes (LNs) in computed tomography (CT) scans. First, two CT radiomics models were built using primary lesion and LN image features. Subsequently, an information fusion method was used to build a fusion radiomics model by combining the tumor and LN image features. Furthermore, a transfer learning method was applied to build a deep convolutional neural network (CNN) model. Finally, the prediction scores generated by the radiomics and CNN models were fused to improve the prognosis prediction performance. The disease‐free survival (DFS) and overall survival (OS) prediction areas under the curves (AUCs) generated by the fusion model improved to 0.76 ± 0.08 and 0.91 ± 0.05, respectively. These were significantly higher than the AUCs generated by the models using the individual CT radiomics and deep image features. Applying the survival analysis method, the DFS and OS fusion models yielded concordance index (C‐index) values of 0.73 and 0.9, respectively. Hence, the combined model exhibited good predictive efficacy; therefore, it could be used for the accurate assessment of the prognosis of stage II CRC patients. Moreover, it could be used to screen out high‐risk patients with poor prognoses, and assist in the formulation of clinical treatment decisions in a timely manner to achieve precision medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉默的孤风完成签到,获得积分10
刚刚
喻嘟嘟完成签到,获得积分20
刚刚
1秒前
1秒前
5552222完成签到,获得积分10
1秒前
gelinhao完成签到,获得积分10
2秒前
鹤扰完成签到,获得积分10
3秒前
WW发布了新的文献求助10
3秒前
受伤听露完成签到,获得积分10
3秒前
科目三应助青柠大大采纳,获得10
4秒前
MQQ完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
BLUICE发布了新的文献求助30
5秒前
iNk应助好学的猪采纳,获得10
5秒前
mark707完成签到,获得积分20
5秒前
如意雅山发布了新的文献求助10
5秒前
msk完成签到 ,获得积分10
6秒前
6秒前
6秒前
爆米花应助健忘的无色采纳,获得10
6秒前
萝卜卷心菜完成签到 ,获得积分10
6秒前
木木应助畅快的书兰采纳,获得10
7秒前
7秒前
SID完成签到,获得积分10
7秒前
Voloid完成签到,获得积分10
8秒前
8秒前
大肉猪完成签到,获得积分10
8秒前
充电宝应助you采纳,获得10
8秒前
9秒前
培a完成签到,获得积分10
9秒前
朴素绿真完成签到,获得积分10
9秒前
写得出发的中完成签到,获得积分10
9秒前
过氧化氢应助咖可乐采纳,获得10
10秒前
10秒前
邺水朱华完成签到,获得积分10
10秒前
10秒前
ZSJ完成签到,获得积分10
11秒前
曾经念真应助完美的凡灵采纳,获得10
11秒前
领导范儿应助幽默的书本采纳,获得30
12秒前
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582