Special issue “The advance of solid tumor research in China”: Prognosis prediction for stage II colorectal cancer by fusing computed tomography radiomics and deep‐learning features of primary lesions and peripheral lymph nodes

无线电技术 医学 一致性 阶段(地层学) 结直肠癌 深度学习 人工智能 放射科 卷积神经网络 癌症 内科学 肿瘤科 计算机科学 生物 古生物学
作者
Menglei Li,Jing Gong,Yichao Bao,Dan Huang,Junjie Peng,Tong Tong
出处
期刊:International Journal of Cancer [Wiley]
卷期号:152 (1): 31-41 被引量:12
标识
DOI:10.1002/ijc.34053
摘要

Abstract Currently, the prognosis assessment of stage II colorectal cancer (CRC) remains a difficult clinical problem; therefore, more accurate prognostic predictors must be developed. In our study, we developed a prognostic prediction model for stage II CRC by fusing radiomics and deep‐learning (DL) features of primary lesions and peripheral lymph nodes (LNs) in computed tomography (CT) scans. First, two CT radiomics models were built using primary lesion and LN image features. Subsequently, an information fusion method was used to build a fusion radiomics model by combining the tumor and LN image features. Furthermore, a transfer learning method was applied to build a deep convolutional neural network (CNN) model. Finally, the prediction scores generated by the radiomics and CNN models were fused to improve the prognosis prediction performance. The disease‐free survival (DFS) and overall survival (OS) prediction areas under the curves (AUCs) generated by the fusion model improved to 0.76 ± 0.08 and 0.91 ± 0.05, respectively. These were significantly higher than the AUCs generated by the models using the individual CT radiomics and deep image features. Applying the survival analysis method, the DFS and OS fusion models yielded concordance index (C‐index) values of 0.73 and 0.9, respectively. Hence, the combined model exhibited good predictive efficacy; therefore, it could be used for the accurate assessment of the prognosis of stage II CRC patients. Moreover, it could be used to screen out high‐risk patients with poor prognoses, and assist in the formulation of clinical treatment decisions in a timely manner to achieve precision medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
10秒前
11秒前
15秒前
和谐初南发布了新的文献求助10
17秒前
52464发布了新的文献求助10
18秒前
闲鱼泡泡完成签到,获得积分10
19秒前
20秒前
20秒前
阿南完成签到,获得积分10
21秒前
22秒前
乐乐应助刘大米采纳,获得10
23秒前
xinghun910应助Broadway Zhang采纳,获得10
23秒前
24秒前
25秒前
大模型应助苹果柜子采纳,获得10
25秒前
阿南发布了新的文献求助10
27秒前
zmnzmnzmn给靓丽一寡的求助进行了留言
28秒前
慕青应助xinghun910采纳,获得10
29秒前
0℃发布了新的文献求助10
29秒前
30秒前
闲鱼泡泡关注了科研通微信公众号
33秒前
35秒前
左岸发布了新的社区帖子
36秒前
文献看不懂应助loin采纳,获得10
37秒前
Dian完成签到,获得积分10
38秒前
39秒前
40秒前
mmyhn发布了新的文献求助10
44秒前
..发布了新的文献求助10
45秒前
46秒前
Violet发布了新的文献求助10
49秒前
52秒前
..完成签到,获得积分10
54秒前
57秒前
57秒前
小李完成签到 ,获得积分10
58秒前
姚芭蕉发布了新的文献求助10
59秒前
闲鱼泡泡发布了新的文献求助10
1分钟前
洛敏夕5743发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775692
求助须知:如何正确求助?哪些是违规求助? 3321266
关于积分的说明 10204614
捐赠科研通 3036227
什么是DOI,文献DOI怎么找? 1666017
邀请新用户注册赠送积分活动 797258
科研通“疑难数据库(出版商)”最低求助积分说明 757777