City classification for municipal solid waste prediction in mainland China based on K-means clustering

城市固体废物 聚类分析 人均 中国大陆 地理 国内生产总值 人口 星团(航天器) 中国 环境科学 环境工程 统计 数学 工程类 经济增长 计算机科学 废物管理 人口学 经济 社会学 考古 程序设计语言
作者
Xingyu Du,Dongjie Niu,Yu Chen,Xin Wang,Zhujie Bi
出处
期刊:Waste Management [Elsevier BV]
卷期号:144: 445-453 被引量:27
标识
DOI:10.1016/j.wasman.2022.04.024
摘要

Cities in mainland China are usually classified according to geographical locations. This traditional city classification system is limited to relative fixed factors, which lives out a gap in terms of the spatial differences of municipal solid waste (MSW). Developing a more comprehensive city classification system is essential for MSW generation prediction and waste management. In this study, six economic, social and climatic indicators that affect MSW generation: population, per capita GDP (PCGDP), environmental sanitation investment (ESI), average temperature, average precipitation, and average humidity, are selected. Weights were calculated for each indicator using a combination of CRITIC weight method and Pearson correlation coefficient prior to cluster analysis. The k-means clustering algorithm was used to classify all cities into four clusters, which differed significantly in the relationships between MSW generation and influencing factors. The results of Kruskal-Wallis test also show that cities in different clusters show different distributions in terms of the indicators selected. The cross-prediction results of the model further validate the reliability of the clustering results from a quantitative perspective. By establishing a city classification system, cities with similar relationships between MSW generation and influencing factors can be placed into one cluster. The model established in one certain city cluster can be used to predict the MSW generation for cities in the same cluster that lack historical data. This may also help to formulate appropriate regional policies according to different relationships between MSW generation and influencing factors, especially for the four city clusters in the mainland China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fanny完成签到,获得积分10
1秒前
1秒前
1秒前
好好学习发布了新的文献求助30
2秒前
失眠的汽车完成签到,获得积分10
2秒前
2秒前
西瓜发布了新的文献求助10
3秒前
3秒前
王小帅ok发布了新的文献求助10
3秒前
Sandy完成签到,获得积分10
4秒前
SciGPT应助小张采纳,获得10
4秒前
5秒前
pzh发布了新的文献求助10
5秒前
5秒前
迟梦琪发布了新的文献求助10
5秒前
艾科研发布了新的文献求助10
6秒前
CCR发布了新的文献求助10
6秒前
科研通AI6应助yanziwu94采纳,获得10
6秒前
6秒前
6秒前
顺心紫翠完成签到,获得积分10
7秒前
7秒前
ding应助Frose采纳,获得10
7秒前
科研通AI5应助西瓜采纳,获得10
7秒前
SciGPT应助Ccc采纳,获得10
8秒前
香蕉觅云应助Saya采纳,获得10
8秒前
昏睡的半莲完成签到,获得积分10
8秒前
英俊的铭应助大宝君采纳,获得20
8秒前
1101592875发布了新的文献求助10
9秒前
欢呼的初彤完成签到 ,获得积分10
9秒前
9秒前
9秒前
9秒前
婷婷完成签到,获得积分10
10秒前
10秒前
JamesPei应助李金文采纳,获得10
11秒前
打打应助平常的纸飞机采纳,获得10
11秒前
体贴代容完成签到,获得积分10
11秒前
CodeCraft应助拉萌采纳,获得10
12秒前
希望天下0贩的0应助ww采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576191
求助须知:如何正确求助?哪些是违规求助? 3995491
关于积分的说明 12369060
捐赠科研通 3669468
什么是DOI,文献DOI怎么找? 2022229
邀请新用户注册赠送积分活动 1056224
科研通“疑难数据库(出版商)”最低求助积分说明 943543