亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

City classification for municipal solid waste prediction in mainland China based on K-means clustering

城市固体废物 聚类分析 人均 中国大陆 地理 国内生产总值 人口 星团(航天器) 中国 环境科学 环境工程 统计 数学 工程类 经济增长 计算机科学 废物管理 人口学 经济 考古 社会学 程序设计语言
作者
Xingyu Du,Dongjie Niu,Yu Chen,Xin Wang,Zhujie Bi
出处
期刊:Waste Management [Elsevier]
卷期号:144: 445-453 被引量:27
标识
DOI:10.1016/j.wasman.2022.04.024
摘要

Cities in mainland China are usually classified according to geographical locations. This traditional city classification system is limited to relative fixed factors, which lives out a gap in terms of the spatial differences of municipal solid waste (MSW). Developing a more comprehensive city classification system is essential for MSW generation prediction and waste management. In this study, six economic, social and climatic indicators that affect MSW generation: population, per capita GDP (PCGDP), environmental sanitation investment (ESI), average temperature, average precipitation, and average humidity, are selected. Weights were calculated for each indicator using a combination of CRITIC weight method and Pearson correlation coefficient prior to cluster analysis. The k-means clustering algorithm was used to classify all cities into four clusters, which differed significantly in the relationships between MSW generation and influencing factors. The results of Kruskal-Wallis test also show that cities in different clusters show different distributions in terms of the indicators selected. The cross-prediction results of the model further validate the reliability of the clustering results from a quantitative perspective. By establishing a city classification system, cities with similar relationships between MSW generation and influencing factors can be placed into one cluster. The model established in one certain city cluster can be used to predict the MSW generation for cities in the same cluster that lack historical data. This may also help to formulate appropriate regional policies according to different relationships between MSW generation and influencing factors, especially for the four city clusters in the mainland China.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助at采纳,获得10
1秒前
Pattis完成签到 ,获得积分10
13秒前
25秒前
阿俊发布了新的文献求助10
30秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
shhoing应助科研通管家采纳,获得10
33秒前
情怀应助科研通管家采纳,获得10
33秒前
科研通AI2S应助科研通管家采纳,获得30
33秒前
乐乐应助科研通管家采纳,获得10
33秒前
gexzygg应助科研通管家采纳,获得10
33秒前
gexzygg应助科研通管家采纳,获得10
33秒前
shhoing应助科研通管家采纳,获得10
33秒前
慕青应助王波波早睡晚起采纳,获得10
50秒前
1分钟前
土豪的灵竹完成签到 ,获得积分10
1分钟前
1分钟前
贺六浑发布了新的文献求助20
1分钟前
午盏完成签到 ,获得积分10
2分钟前
gexzygg应助科研通管家采纳,获得20
2分钟前
gexzygg应助科研通管家采纳,获得10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
gexzygg应助科研通管家采纳,获得10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
2分钟前
整齐的飞兰完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
xiaoxinbaba发布了新的文献求助10
3分钟前
达不溜搽发布了新的文献求助10
3分钟前
xiaoxinbaba发布了新的文献求助10
3分钟前
3分钟前
加菲丰丰完成签到,获得积分0
3分钟前
cc完成签到,获得积分10
4分钟前
4分钟前
gexzygg应助科研通管家采纳,获得10
4分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
gexzygg应助科研通管家采纳,获得10
4分钟前
hy完成签到 ,获得积分10
4分钟前
drjyang完成签到,获得积分10
4分钟前
blenx完成签到,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561480
求助须知:如何正确求助?哪些是违规求助? 4646582
关于积分的说明 14678674
捐赠科研通 4587857
什么是DOI,文献DOI怎么找? 2517242
邀请新用户注册赠送积分活动 1490539
关于科研通互助平台的介绍 1461514