亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

City classification for municipal solid waste prediction in mainland China based on K-means clustering

城市固体废物 聚类分析 人均 中国大陆 地理 国内生产总值 人口 星团(航天器) 中国 环境科学 环境工程 统计 数学 工程类 经济增长 计算机科学 废物管理 人口学 经济 考古 社会学 程序设计语言
作者
Xingyu Du,Dongjie Niu,Yu Chen,Xin Wang,Zhujie Bi
出处
期刊:Waste Management [Elsevier]
卷期号:144: 445-453 被引量:27
标识
DOI:10.1016/j.wasman.2022.04.024
摘要

Cities in mainland China are usually classified according to geographical locations. This traditional city classification system is limited to relative fixed factors, which lives out a gap in terms of the spatial differences of municipal solid waste (MSW). Developing a more comprehensive city classification system is essential for MSW generation prediction and waste management. In this study, six economic, social and climatic indicators that affect MSW generation: population, per capita GDP (PCGDP), environmental sanitation investment (ESI), average temperature, average precipitation, and average humidity, are selected. Weights were calculated for each indicator using a combination of CRITIC weight method and Pearson correlation coefficient prior to cluster analysis. The k-means clustering algorithm was used to classify all cities into four clusters, which differed significantly in the relationships between MSW generation and influencing factors. The results of Kruskal-Wallis test also show that cities in different clusters show different distributions in terms of the indicators selected. The cross-prediction results of the model further validate the reliability of the clustering results from a quantitative perspective. By establishing a city classification system, cities with similar relationships between MSW generation and influencing factors can be placed into one cluster. The model established in one certain city cluster can be used to predict the MSW generation for cities in the same cluster that lack historical data. This may also help to formulate appropriate regional policies according to different relationships between MSW generation and influencing factors, especially for the four city clusters in the mainland China.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
开朗如猪猪完成签到 ,获得积分10
刚刚
3秒前
Jonathan完成签到,获得积分10
3秒前
shinn发布了新的文献求助10
3秒前
4秒前
LL完成签到,获得积分10
4秒前
taysun完成签到 ,获得积分10
6秒前
哈哈带发布了新的文献求助10
6秒前
LL发布了新的文献求助10
7秒前
骨科小李完成签到,获得积分10
7秒前
英俊汝燕完成签到,获得积分10
8秒前
8秒前
11秒前
13秒前
yyy发布了新的文献求助10
16秒前
斯文败类应助shinn采纳,获得10
19秒前
20秒前
25秒前
周亚平发布了新的文献求助10
26秒前
cdu完成签到,获得积分10
28秒前
定西完成签到,获得积分10
28秒前
陈思发布了新的文献求助10
30秒前
爆米花应助flyabc采纳,获得10
31秒前
32秒前
32秒前
李健的粉丝团团长应助HE采纳,获得10
33秒前
完美世界应助发的不太好采纳,获得10
34秒前
Orange应助周亚平采纳,获得10
34秒前
35秒前
shinn发布了新的文献求助10
36秒前
ohwhale完成签到 ,获得积分10
36秒前
38秒前
Jasper应助科研通管家采纳,获得10
39秒前
39秒前
Rita应助科研通管家采纳,获得10
39秒前
慕青应助科研通管家采纳,获得10
39秒前
完美世界应助科研通管家采纳,获得10
39秒前
40秒前
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772246
求助须知:如何正确求助?哪些是违规求助? 5596912
关于积分的说明 15429307
捐赠科研通 4905268
什么是DOI,文献DOI怎么找? 2639301
邀请新用户注册赠送积分活动 1587230
关于科研通互助平台的介绍 1542080