City classification for municipal solid waste prediction in mainland China based on K-means clustering

城市固体废物 聚类分析 人均 中国大陆 地理 国内生产总值 人口 星团(航天器) 中国 环境科学 环境工程 统计 数学 工程类 经济增长 计算机科学 废物管理 人口学 经济 考古 社会学 程序设计语言
作者
Xingyu Du,Dongjie Niu,Yu Chen,Xin Wang,Zhujie Bi
出处
期刊:Waste Management [Elsevier]
卷期号:144: 445-453 被引量:27
标识
DOI:10.1016/j.wasman.2022.04.024
摘要

Cities in mainland China are usually classified according to geographical locations. This traditional city classification system is limited to relative fixed factors, which lives out a gap in terms of the spatial differences of municipal solid waste (MSW). Developing a more comprehensive city classification system is essential for MSW generation prediction and waste management. In this study, six economic, social and climatic indicators that affect MSW generation: population, per capita GDP (PCGDP), environmental sanitation investment (ESI), average temperature, average precipitation, and average humidity, are selected. Weights were calculated for each indicator using a combination of CRITIC weight method and Pearson correlation coefficient prior to cluster analysis. The k-means clustering algorithm was used to classify all cities into four clusters, which differed significantly in the relationships between MSW generation and influencing factors. The results of Kruskal-Wallis test also show that cities in different clusters show different distributions in terms of the indicators selected. The cross-prediction results of the model further validate the reliability of the clustering results from a quantitative perspective. By establishing a city classification system, cities with similar relationships between MSW generation and influencing factors can be placed into one cluster. The model established in one certain city cluster can be used to predict the MSW generation for cities in the same cluster that lack historical data. This may also help to formulate appropriate regional policies according to different relationships between MSW generation and influencing factors, especially for the four city clusters in the mainland China.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
syno完成签到,获得积分10
刚刚
1秒前
Wzh发布了新的文献求助10
3秒前
自由拾叁完成签到,获得积分10
3秒前
Lignin发布了新的文献求助10
3秒前
5秒前
5秒前
6秒前
乐乐应助wa采纳,获得10
7秒前
8秒前
蝴蝶兰完成签到,获得积分10
8秒前
11马完成签到,获得积分10
10秒前
11秒前
lhf发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
李健应助tf采纳,获得10
12秒前
仁爱行云发布了新的文献求助10
18秒前
20秒前
lhf完成签到,获得积分10
20秒前
20秒前
ding应助马户的崛起采纳,获得10
22秒前
22秒前
粗心的谷蕊完成签到,获得积分10
23秒前
24秒前
wa发布了新的文献求助10
25秒前
irenelijiaaa完成签到 ,获得积分10
25秒前
26秒前
27秒前
27秒前
谢大喵发布了新的文献求助10
28秒前
28秒前
zxy发布了新的文献求助10
30秒前
麦瑜小昕完成签到,获得积分10
30秒前
过时的不评完成签到,获得积分10
31秒前
赢赢发布了新的文献求助10
31秒前
毛毛完成签到,获得积分10
31秒前
32秒前
量子星尘发布了新的文献求助10
32秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736834
求助须知:如何正确求助?哪些是违规求助? 5368742
关于积分的说明 15334181
捐赠科研通 4880593
什么是DOI,文献DOI怎么找? 2622909
邀请新用户注册赠送积分活动 1571817
关于科研通互助平台的介绍 1528640