亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

City classification for municipal solid waste prediction in mainland China based on K-means clustering

城市固体废物 聚类分析 人均 中国大陆 地理 国内生产总值 人口 星团(航天器) 中国 环境科学 环境工程 统计 数学 工程类 经济增长 计算机科学 废物管理 人口学 经济 考古 社会学 程序设计语言
作者
Xingyu Du,Dongjie Niu,Yu Chen,Xin Wang,Zhujie Bi
出处
期刊:Waste Management [Elsevier]
卷期号:144: 445-453 被引量:27
标识
DOI:10.1016/j.wasman.2022.04.024
摘要

Cities in mainland China are usually classified according to geographical locations. This traditional city classification system is limited to relative fixed factors, which lives out a gap in terms of the spatial differences of municipal solid waste (MSW). Developing a more comprehensive city classification system is essential for MSW generation prediction and waste management. In this study, six economic, social and climatic indicators that affect MSW generation: population, per capita GDP (PCGDP), environmental sanitation investment (ESI), average temperature, average precipitation, and average humidity, are selected. Weights were calculated for each indicator using a combination of CRITIC weight method and Pearson correlation coefficient prior to cluster analysis. The k-means clustering algorithm was used to classify all cities into four clusters, which differed significantly in the relationships between MSW generation and influencing factors. The results of Kruskal-Wallis test also show that cities in different clusters show different distributions in terms of the indicators selected. The cross-prediction results of the model further validate the reliability of the clustering results from a quantitative perspective. By establishing a city classification system, cities with similar relationships between MSW generation and influencing factors can be placed into one cluster. The model established in one certain city cluster can be used to predict the MSW generation for cities in the same cluster that lack historical data. This may also help to formulate appropriate regional policies according to different relationships between MSW generation and influencing factors, especially for the four city clusters in the mainland China.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Criminology34应助科研通管家采纳,获得10
刚刚
Criminology34应助科研通管家采纳,获得10
刚刚
1秒前
7秒前
阿俊完成签到 ,获得积分10
23秒前
35秒前
ytc发布了新的文献求助10
41秒前
小二郎应助Cher.采纳,获得10
45秒前
SGOM完成签到 ,获得积分10
47秒前
52秒前
53秒前
科研菜鸡发布了新的文献求助10
59秒前
CipherSage应助灵巧的大开采纳,获得10
1分钟前
跳跃完成签到,获得积分10
1分钟前
1分钟前
1分钟前
领导范儿应助科研通管家采纳,获得10
2分钟前
领导范儿应助科研通管家采纳,获得10
2分钟前
汉堡包应助科研通管家采纳,获得10
2分钟前
汉堡包应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
Lenna45完成签到 ,获得积分10
2分钟前
2分钟前
鹿呦完成签到 ,获得积分10
2分钟前
瑞葛完成签到,获得积分10
2分钟前
科研通AI6.1应助瑞葛采纳,获得10
2分钟前
3分钟前
XIAOBAI完成签到,获得积分10
3分钟前
3分钟前
zsyf完成签到,获得积分10
3分钟前
Ava应助科研通管家采纳,获得10
4分钟前
彭于晏应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
萝卜发布了新的文献求助10
4分钟前
uss完成签到,获得积分10
4分钟前
SciGPT应助萝卜采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
Ägyptische Geschichte der 21.–30. Dynastie 1520
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739528
求助须知:如何正确求助?哪些是违规求助? 5387168
关于积分的说明 15339759
捐赠科研通 4882026
什么是DOI,文献DOI怎么找? 2624099
邀请新用户注册赠送积分活动 1572789
关于科研通互助平台的介绍 1529589