Urban traffic flow prediction techniques: A review

流量(计算机网络) 交通拥挤 计算机科学 智能交通系统 燃料效率 人口 运输工程 大数据 计算机安全 工程类 数据挖掘 社会学 航空航天工程 人口学
作者
Boris A. Médina-Salgado,Eddy Sánchez-DelaCruz,Pilar Pozos-Parra,Javier E. Sierra
出处
期刊:Sustainable Computing: Informatics and Systems [Elsevier]
卷期号:35: 100739-100739 被引量:72
标识
DOI:10.1016/j.suscom.2022.100739
摘要

In recent decades, the development of transport infrastructure has had a great development, although traffic problems continue to spread due to increase due to the increase in the population in urban areas that require the use of these means of transport. This has led to increased problems related to congestion control, which has a direct impact on citizens: air pollution, fuel consumption, violation of traffic rules, noise pollution, accidents and loss of time. In Latin America, the disorderly growth of cities increases distances and routes, likewise, there is an accelerated increase in the number of cars and motorcycles, which increases the problem. In this sense, intelligent transport systems are an alternative to improve the traffic environment, they incorporate the internet of things and intelligent algorithms, for the collection of data from multiple sources and information processing, respectively, in order to improve the efficiency of the transport flow. However, the processing and modeling of traffic data is challenging due to the complexity of road networks, the space–time dependencies between them, and heterogeneous traffic patterns. In this review study, (i) the smart techniques used for the analysis of mobility data in the prediction of traffic flow in urban areas are grouped, likewise, (ii) the results of implementing said techniques are shown, in addition, (iii) The procedures performed are described and analyzed to understand the benefits and limitations of these smart techniques. Given the above, (iv) the data sets used in the literature and available for use are shown, in addition, (v) the quantifiable results of precision of the various techniques were compared, highlighting advantages and limitations, which allows us to (vi) identify the related challenges and, from there, (vii) propose a general taxonomy in which the knowledge acquired in this traffic flow review converges from a computational approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一支蕉应助感动冰姬采纳,获得10
3秒前
liugg完成签到,获得积分10
3秒前
自由碧菡完成签到,获得积分20
3秒前
Moro完成签到,获得积分10
3秒前
小马甲应助Liu采纳,获得10
4秒前
4秒前
留胡子的胡完成签到,获得积分10
5秒前
科研通AI2S应助Lili采纳,获得10
6秒前
hai完成签到,获得积分10
7秒前
深情安青应助Keller采纳,获得10
7秒前
8秒前
甜甜圈完成签到 ,获得积分10
8秒前
wanci应助jinshijie采纳,获得10
8秒前
土豪的傲菡完成签到,获得积分10
10秒前
dong发布了新的文献求助10
10秒前
11秒前
Joey关注了科研通微信公众号
11秒前
山巅一寺一壶酒完成签到,获得积分10
12秒前
13秒前
jjj完成签到,获得积分10
13秒前
皮皮萱发布了新的文献求助10
14秒前
15秒前
小鱼发布了新的文献求助50
15秒前
大地发布了新的文献求助10
16秒前
16秒前
pcwang完成签到,获得积分10
16秒前
16秒前
慕子默完成签到,获得积分10
18秒前
虚心谷丝完成签到 ,获得积分10
21秒前
疯大仙外向太清完成签到,获得积分10
21秒前
Liu发布了新的文献求助10
21秒前
Tang完成签到,获得积分20
21秒前
S8发布了新的文献求助10
22秒前
987654发布了新的文献求助10
23秒前
大伟完成签到,获得积分10
23秒前
沙洲子完成签到,获得积分10
24秒前
24秒前
Akim应助长欢采纳,获得10
25秒前
27秒前
电介质物理完成签到,获得积分10
27秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135127
求助须知:如何正确求助?哪些是违规求助? 2786103
关于积分的说明 7775305
捐赠科研通 2441924
什么是DOI,文献DOI怎么找? 1298299
科研通“疑难数据库(出版商)”最低求助积分说明 625112
版权声明 600839