Precipitate-Supported Thermal Proteome Profiling Coupled with Deep Learning for Comprehensive Screening of Drug Target Proteins

蛋白质组 计算生物学 葡萄孢霉素 生物 化学 色谱法 生物化学 激酶 蛋白激酶A
作者
Chengfei Ruan,Wanshan Ning,Zhen Liu,Xiaolei Zhang,Zheng Fang,Yanan Li,Yongjun Dang,Yu Xue,Mingliang Ye
出处
期刊:ACS Chemical Biology [American Chemical Society]
卷期号:17 (1): 252-262 被引量:24
标识
DOI:10.1021/acschembio.1c00936
摘要

Although thermal proteome profiling (TPP) acts as a popular modification-free approach for drug target deconvolution, some key problems are still limiting screening sensitivity. In the prevailing TPP workflow, only the soluble fractions are analyzed after thermal treatment, while the precipitate fractions that also contain abundant information of drug-induced stability shifts are discarded; the sigmoid melting curve fitting strategy used for data processing suffers from discriminations for a part of human proteome with multiple transitions. In this study, a precipitate-supported TPP (PSTPP) assay was presented for unbiased and comprehensive analysis of protein–drug interactions at the proteome level. In PSTPP, only these temperatures where significant precipitation is observed were applied to induce protein denaturation and the complementary information contained in both supernatant fractions and precipitate fractions was used to improve the screening specificity and sensitivity. In addition, a novel image recognition algorithm based on deep learning was developed to recognize the target proteins, which circumvented the problems that exist in the sigmoid curve fitting strategy. PSTPP assay was validated by identifying the known targets of methotrexate, raltitrexed, and SNS-032 with good performance. Using a promiscuous kinase inhibitor, staurosporine, we delineated 99 kinase targets with a specificity up to 83% in K562 cell lysates, which represented a significant improvement over the existing thermal shift methods. Furthermore, the PSTPP strategy was successfully applied to analyze the binding targets of rapamycin, identifying the well-known targets, FKBP1A, as well as revealing a few other potential targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
实验顺顺利利完成签到,获得积分10
刚刚
MR_Z完成签到,获得积分10
刚刚
刚刚
慕青应助科研鸟采纳,获得10
1秒前
ray发布了新的文献求助10
1秒前
3秒前
daheeeee发布了新的文献求助10
5秒前
tent01完成签到,获得积分10
6秒前
galaxy发布了新的文献求助10
7秒前
朴实涵菡发布了新的文献求助30
7秒前
9秒前
9秒前
9秒前
酷波er应助许子健采纳,获得10
10秒前
11秒前
Rondab应助平常的忆文采纳,获得10
12秒前
Charles完成签到,获得积分10
13秒前
怪杰发布了新的文献求助10
13秒前
suiFeng发布了新的文献求助10
14秒前
畅彤发布了新的文献求助10
16秒前
16秒前
CipherSage应助ruiruili采纳,获得10
16秒前
汉堡包应助xixi采纳,获得10
17秒前
彭于晏应助哇咔咔采纳,获得10
18秒前
槐诗完成签到,获得积分10
20秒前
十二平均律完成签到,获得积分10
20秒前
好运连连完成签到 ,获得积分10
21秒前
22秒前
华仔应助科研通管家采纳,获得10
24秒前
天天快乐应助科研通管家采纳,获得10
24秒前
搜集达人应助科研通管家采纳,获得10
24秒前
SYLH应助科研通管家采纳,获得10
24秒前
丘比特应助科研通管家采纳,获得10
24秒前
彭于晏应助科研通管家采纳,获得10
24秒前
上官若男应助科研通管家采纳,获得10
25秒前
乐乐应助科研通管家采纳,获得10
25秒前
爆米花应助科研通管家采纳,获得10
25秒前
玉玉应助科研通管家采纳,获得20
25秒前
1111应助科研通管家采纳,获得10
25秒前
Owen应助科研通管家采纳,获得10
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966444
求助须知:如何正确求助?哪些是违规求助? 3511885
关于积分的说明 11160462
捐赠科研通 3246599
什么是DOI,文献DOI怎么找? 1793425
邀请新用户注册赠送积分活动 874451
科研通“疑难数据库(出版商)”最低求助积分说明 804388