Precipitate-Supported Thermal Proteome Profiling Coupled with Deep Learning for Comprehensive Screening of Drug Target Proteins

蛋白质组 计算生物学 葡萄孢霉素 生物 化学 色谱法 生物化学 激酶 蛋白激酶A
作者
Chengfei Ruan,Wanshan Ning,Zhen Liu,Xiaolei Zhang,Zheng Fang,Yanan Li,Yongjun Dang,Yu Xue,Mingliang Ye
出处
期刊:ACS Chemical Biology [American Chemical Society]
卷期号:17 (1): 252-262 被引量:22
标识
DOI:10.1021/acschembio.1c00936
摘要

Although thermal proteome profiling (TPP) acts as a popular modification-free approach for drug target deconvolution, some key problems are still limiting screening sensitivity. In the prevailing TPP workflow, only the soluble fractions are analyzed after thermal treatment, while the precipitate fractions that also contain abundant information of drug-induced stability shifts are discarded; the sigmoid melting curve fitting strategy used for data processing suffers from discriminations for a part of human proteome with multiple transitions. In this study, a precipitate-supported TPP (PSTPP) assay was presented for unbiased and comprehensive analysis of protein-drug interactions at the proteome level. In PSTPP, only these temperatures where significant precipitation is observed were applied to induce protein denaturation and the complementary information contained in both supernatant fractions and precipitate fractions was used to improve the screening specificity and sensitivity. In addition, a novel image recognition algorithm based on deep learning was developed to recognize the target proteins, which circumvented the problems that exist in the sigmoid curve fitting strategy. PSTPP assay was validated by identifying the known targets of methotrexate, raltitrexed, and SNS-032 with good performance. Using a promiscuous kinase inhibitor, staurosporine, we delineated 99 kinase targets with a specificity up to 83% in K562 cell lysates, which represented a significant improvement over the existing thermal shift methods. Furthermore, the PSTPP strategy was successfully applied to analyze the binding targets of rapamycin, identifying the well-known targets, FKBP1A, as well as revealing a few other potential targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怡然曼彤发布了新的文献求助10
刚刚
传奇3应助Cc采纳,获得10
1秒前
加贝完成签到 ,获得积分10
2秒前
123完成签到,获得积分10
3秒前
望xun发布了新的文献求助10
3秒前
5秒前
lewis17完成签到,获得积分10
8秒前
phw2333应助冷酷绝悟采纳,获得20
8秒前
SUO发布了新的文献求助150
8秒前
搜集达人应助爱吃鲷鱼烧采纳,获得10
9秒前
刺猬完成签到,获得积分10
11秒前
忆前尘发布了新的文献求助10
11秒前
Jasper应助Y123采纳,获得30
12秒前
SciGPT应助Y123采纳,获得200
12秒前
13秒前
Jasper应助勤劳的星月采纳,获得10
13秒前
第七个太阳完成签到,获得积分10
13秒前
14秒前
15秒前
Miller应助白智妍采纳,获得20
15秒前
雨相所至应助卡卡滴滴采纳,获得10
17秒前
lalala应助卡卡滴滴采纳,获得10
17秒前
man完成签到 ,获得积分10
17秒前
stella完成签到,获得积分10
18秒前
18秒前
lily336699完成签到,获得积分10
21秒前
粥喝不喝发布了新的文献求助10
21秒前
21秒前
乐乐应助RYAN采纳,获得10
21秒前
CHC发布了新的文献求助10
22秒前
亚当发布了新的文献求助10
23秒前
lzj001983完成签到,获得积分10
23秒前
洛小枫完成签到,获得积分10
24秒前
lily336699发布了新的文献求助10
25秒前
25秒前
Lucas应助小杜小杜采纳,获得10
26秒前
28秒前
专一的书兰完成签到 ,获得积分10
28秒前
28秒前
29秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Colloidal Synthesis of Plasmonic Nanometals 500
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147888
求助须知:如何正确求助?哪些是违规求助? 2798879
关于积分的说明 7832212
捐赠科研通 2455931
什么是DOI,文献DOI怎么找? 1307018
科研通“疑难数据库(出版商)”最低求助积分说明 627959
版权声明 601587