Effective diffraction separation using the improved optimal rank-reduction method

奇异值分解 衍射 反射(计算机编程) 秩(图论) 计算机科学 算法 不连续性分类 数学优化 数学 光学 物理 组合数学 数学分析 程序设计语言
作者
Peng Lin,Suping Peng,Xiaoqin Cui,Wenfeng Du,Chuangjian Li
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:87 (3): V169-V182 被引量:7
标识
DOI:10.1190/geo2021-0326.1
摘要

Seismic diffractions encoding subsurface small-scale geologic structures have great potential for high-resolution imaging of subwavelength information. Diffraction separation from the dominant reflected wavefields still plays a vital role because of the weak energy characteristics of the diffractions. Traditional rank-reduction (RR) methods based on the low-rank assumption of reflection events have been commonly used for diffraction separation. However, these methods using truncated singular-value decomposition (TSVD) suffer from the problem of reflection-rank selection by singular-value spectrum analysis, especially for complicated seismic data. In addition, the separation problem for the tangent wavefields of reflections and diffractions is challenging. To alleviate these limitations, we have developed an effective diffraction separation strategy using an improved optimal RR (ORR) method to remove the dependence on the reflection rank and improve the quality of separation results. The improved RR method adaptively determines the optimal singular values from the input signals by directly solving an optimization problem that minimizes the Frobenius-norm difference between the estimated and exact reflections instead of the TSVD operation. This improved method can effectively overcome the problem of reflection-rank estimation in the global and local RR methods and adjusts to the diversity and complexity of seismic data. The adaptive data-driven algorithms indicate good performance in terms of the trade-off between high-quality diffraction separation and reflection suppression for the ORR operation. Applications of our strategy to synthetic and field examples demonstrate the superiority of diffraction separation in detecting and revealing subsurface small-scale geologic discontinuities and inhomogeneities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XXF发布了新的文献求助10
1秒前
赤邪发布了新的文献求助10
1秒前
石头发布了新的文献求助10
1秒前
2秒前
Ricky完成签到,获得积分10
2秒前
上官若男应助luuuuuu采纳,获得10
2秒前
杨永亮完成签到,获得积分10
3秒前
3秒前
袁粪到了完成签到 ,获得积分10
3秒前
3秒前
异烟肼完成签到 ,获得积分10
3秒前
Jenny应助通~采纳,获得10
3秒前
yory完成签到 ,获得积分10
4秒前
4秒前
远航完成签到 ,获得积分10
4秒前
4秒前
彭于晏应助Rrr采纳,获得10
4秒前
卓然发布了新的文献求助10
4秒前
精明的中蓝完成签到,获得积分10
5秒前
66应助小钻风采纳,获得10
5秒前
5秒前
领导范儿应助星星采纳,获得10
6秒前
汉堡包应助shotgod采纳,获得10
6秒前
如寄完成签到 ,获得积分10
6秒前
顾闭月发布了新的文献求助10
7秒前
研友_VZG7GZ应助石头采纳,获得10
7秒前
有益发布了新的文献求助10
8秒前
xibei完成签到 ,获得积分10
8秒前
9秒前
丘比特应助爱吃肉的猪采纳,获得10
9秒前
9秒前
9秒前
dyh6802发布了新的文献求助10
9秒前
10秒前
Wxx完成签到 ,获得积分10
10秒前
七栀完成签到,获得积分10
10秒前
科研通AI2S应助阿芙乐尔采纳,获得10
12秒前
一条贤与完成签到,获得积分20
12秒前
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794