A modelling approach based on Bayesian networks for dam risk analysis: Integration of machine learning algorithm and domain knowledge

贝叶斯网络 灵敏度(控制系统) 机器学习 计算机科学 领域(数学分析) 溢洪道 风险评估 领域知识 算法 人工智能 风险分析(工程) 工程类 数据挖掘 数学 岩土工程 计算机安全 医学 电子工程 数学分析
作者
Xianqi Tang,Anyi Chen,Jinrong He
出处
期刊:International journal of disaster risk reduction [Elsevier]
卷期号:71: 102818-102818 被引量:18
标识
DOI:10.1016/j.ijdrr.2022.102818
摘要

The safety of dams, especially that of earthen dams, is threatened by various uncertain and interrelated risk factors. Consequently, dam risk analysis is vital for dam safety governance and failure prevention. A Bayesian network (BN) is an effective tool for this issue as its excellent ability in representing uncertainty and reasoning. Most previous studies have relied solely on domain knowledge (DK) to establish BN models, leading to inefficient and subjective results when solving complex systems. The increasing observations has improved the viability of using machine learning (ML) to automatically model complex systems. Herein, ML algorithms are used to develop automatic BN models for risk analysis of earthen dams in the USA, which are subsequently modified using DK. The results revealed that the automatic BN models can identify some potential causal relationships that are ignored by DK, whereas some impractical causalities identified in the automatic BN models can be modified by using DK. Moreover, the modified BN model has a better performance in the prediction of earthen dam failure with an average overall accuracy of 84.6%, compared to 80.3% with the automatic BN models, and 76.5% with a manual BN model created using only DK. Using the modified BN models, the three foremost risk factors based on their influence and sensitivity analysis were identified to be extreme flood, malfunction of spillway or gate, and slope instability. Our study highlights that the integration of ML algorithms and DK is an effective approach for developing reliable BN models for dam risk analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小冯发布了新的文献求助10
1秒前
无私砖家发布了新的文献求助20
2秒前
飞翔的梦完成签到,获得积分10
2秒前
2秒前
WWXWWX发布了新的文献求助10
2秒前
颛颛发布了新的文献求助10
3秒前
闫伯涵发布了新的文献求助10
3秒前
4秒前
石页发布了新的文献求助10
6秒前
赵云完成签到,获得积分10
6秒前
7秒前
酷波er应助520采纳,获得10
8秒前
CARL发布了新的文献求助30
8秒前
8秒前
优美语风完成签到,获得积分20
8秒前
9秒前
Jay完成签到,获得积分10
10秒前
11秒前
闫伯涵完成签到,获得积分10
12秒前
excellent_shit完成签到,获得积分10
12秒前
13秒前
huntme发布了新的文献求助10
15秒前
冲塔亚德发布了新的文献求助10
16秒前
16秒前
石页完成签到,获得积分10
16秒前
fifteen发布了新的文献求助10
16秒前
17秒前
我劝告了风完成签到,获得积分10
17秒前
Betty发布了新的文献求助10
18秒前
liner完成签到 ,获得积分10
18秒前
FashionBoy应助鱼鳞飞飞采纳,获得10
19秒前
souther完成签到,获得积分0
19秒前
20秒前
舒心忆南完成签到,获得积分10
20秒前
22秒前
23秒前
zachatyTS关注了科研通微信公众号
24秒前
serpiero完成签到,获得积分10
24秒前
情怀应助科研通管家采纳,获得10
26秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160857
求助须知:如何正确求助?哪些是违规求助? 2812058
关于积分的说明 7894301
捐赠科研通 2470980
什么是DOI,文献DOI怎么找? 1315808
科研通“疑难数据库(出版商)”最低求助积分说明 631003
版权声明 602068