A modelling approach based on Bayesian networks for dam risk analysis: Integration of machine learning algorithm and domain knowledge

贝叶斯网络 灵敏度(控制系统) 机器学习 计算机科学 领域(数学分析) 溢洪道 风险评估 领域知识 算法 人工智能 风险分析(工程) 工程类 数据挖掘 数学 岩土工程 计算机安全 医学 电子工程 数学分析
作者
Xianqi Tang,Anyi Chen,Jinrong He
出处
期刊:International journal of disaster risk reduction [Elsevier]
卷期号:71: 102818-102818 被引量:18
标识
DOI:10.1016/j.ijdrr.2022.102818
摘要

The safety of dams, especially that of earthen dams, is threatened by various uncertain and interrelated risk factors. Consequently, dam risk analysis is vital for dam safety governance and failure prevention. A Bayesian network (BN) is an effective tool for this issue as its excellent ability in representing uncertainty and reasoning. Most previous studies have relied solely on domain knowledge (DK) to establish BN models, leading to inefficient and subjective results when solving complex systems. The increasing observations has improved the viability of using machine learning (ML) to automatically model complex systems. Herein, ML algorithms are used to develop automatic BN models for risk analysis of earthen dams in the USA, which are subsequently modified using DK. The results revealed that the automatic BN models can identify some potential causal relationships that are ignored by DK, whereas some impractical causalities identified in the automatic BN models can be modified by using DK. Moreover, the modified BN model has a better performance in the prediction of earthen dam failure with an average overall accuracy of 84.6%, compared to 80.3% with the automatic BN models, and 76.5% with a manual BN model created using only DK. Using the modified BN models, the three foremost risk factors based on their influence and sensitivity analysis were identified to be extreme flood, malfunction of spillway or gate, and slope instability. Our study highlights that the integration of ML algorithms and DK is an effective approach for developing reliable BN models for dam risk analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
sun发布了新的文献求助10
3秒前
Ava应助土里刨星星的鱼采纳,获得10
5秒前
欢呼冰岚完成签到,获得积分10
5秒前
大王卡发布了新的文献求助30
5秒前
凝子老师发布了新的文献求助10
5秒前
优雅海雪发布了新的文献求助10
7秒前
7秒前
正在获取昵称中...完成签到,获得积分10
9秒前
研白完成签到 ,获得积分10
10秒前
蜜雪冰城完成签到,获得积分10
10秒前
狂歌痛饮空度日完成签到,获得积分10
11秒前
隐形曼青应助侦察兵采纳,获得10
11秒前
欢呼冰岚发布了新的文献求助50
12秒前
陵铛铛铛发布了新的文献求助10
12秒前
搜集达人应助caoyy采纳,获得10
12秒前
YYJ25发布了新的文献求助10
13秒前
勤劳落雁发布了新的文献求助30
14秒前
科研通AI5应助优雅海雪采纳,获得10
14秒前
loulan完成签到,获得积分10
15秒前
orixero应助yyyyy语言采纳,获得10
17秒前
土里刨星星的鱼完成签到,获得积分20
17秒前
Ava应助sun采纳,获得30
19秒前
miss完成签到,获得积分10
20秒前
hu完成签到 ,获得积分10
21秒前
mathmotive完成签到,获得积分10
22秒前
白大褂完成签到,获得积分10
23秒前
23秒前
23秒前
小马甲应助孙淳采纳,获得10
25秒前
25秒前
科研通AI5应助二二二采纳,获得10
25秒前
赘婿应助尘林采纳,获得10
26秒前
HPP123完成签到,获得积分10
28秒前
29秒前
YYJ25发布了新的文献求助10
30秒前
liyuchen发布了新的文献求助10
30秒前
侦察兵发布了新的文献求助10
30秒前
32秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849