亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A modelling approach based on Bayesian networks for dam risk analysis: Integration of machine learning algorithm and domain knowledge

贝叶斯网络 灵敏度(控制系统) 机器学习 计算机科学 领域(数学分析) 溢洪道 风险评估 领域知识 算法 人工智能 风险分析(工程) 工程类 数据挖掘 数学 岩土工程 计算机安全 医学 电子工程 数学分析
作者
Xianqi Tang,Anyi Chen,Jinrong He
出处
期刊:International journal of disaster risk reduction [Elsevier BV]
卷期号:71: 102818-102818 被引量:18
标识
DOI:10.1016/j.ijdrr.2022.102818
摘要

The safety of dams, especially that of earthen dams, is threatened by various uncertain and interrelated risk factors. Consequently, dam risk analysis is vital for dam safety governance and failure prevention. A Bayesian network (BN) is an effective tool for this issue as its excellent ability in representing uncertainty and reasoning. Most previous studies have relied solely on domain knowledge (DK) to establish BN models, leading to inefficient and subjective results when solving complex systems. The increasing observations has improved the viability of using machine learning (ML) to automatically model complex systems. Herein, ML algorithms are used to develop automatic BN models for risk analysis of earthen dams in the USA, which are subsequently modified using DK. The results revealed that the automatic BN models can identify some potential causal relationships that are ignored by DK, whereas some impractical causalities identified in the automatic BN models can be modified by using DK. Moreover, the modified BN model has a better performance in the prediction of earthen dam failure with an average overall accuracy of 84.6%, compared to 80.3% with the automatic BN models, and 76.5% with a manual BN model created using only DK. Using the modified BN models, the three foremost risk factors based on their influence and sensitivity analysis were identified to be extreme flood, malfunction of spillway or gate, and slope instability. Our study highlights that the integration of ML algorithms and DK is an effective approach for developing reliable BN models for dam risk analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助科研通管家采纳,获得10
刚刚
HaCat应助科研通管家采纳,获得10
刚刚
搜集达人应助可爱丹彤采纳,获得10
3秒前
7秒前
万能图书馆应助可爱丹彤采纳,获得10
20秒前
柚又完成签到 ,获得积分10
37秒前
韩雨桐完成签到 ,获得积分10
43秒前
44秒前
45秒前
Gabriel发布了新的文献求助10
49秒前
852应助可爱丹彤采纳,获得10
51秒前
51秒前
56秒前
深情安青应助可爱丹彤采纳,获得10
1分钟前
1分钟前
领导范儿应助Gabriel采纳,获得10
1分钟前
xiaoxiao发布了新的文献求助10
1分钟前
华仔应助可爱丹彤采纳,获得10
1分钟前
沐沐完成签到,获得积分20
1分钟前
HaCat应助科研通管家采纳,获得10
1分钟前
HaCat应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Tales完成签到 ,获得积分10
2分钟前
沉静的碧琴完成签到 ,获得积分10
2分钟前
caca完成签到,获得积分0
2分钟前
2分钟前
2分钟前
2分钟前
QQ发布了新的文献求助10
2分钟前
暗号完成签到 ,获得积分0
2分钟前
w123发布了新的文献求助10
2分钟前
天选小牛马完成签到 ,获得积分10
2分钟前
w123完成签到,获得积分10
2分钟前
zwb完成签到 ,获得积分10
2分钟前
SciGPT应助可爱丹彤采纳,获得10
2分钟前
Doctor.TANG完成签到 ,获得积分10
2分钟前
祁言完成签到 ,获得积分10
2分钟前
2分钟前
zqq完成签到,获得积分0
3分钟前
QQ完成签到,获得积分20
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5302244
求助须知:如何正确求助?哪些是违规求助? 4449478
关于积分的说明 13848401
捐赠科研通 4335641
什么是DOI,文献DOI怎么找? 2380481
邀请新用户注册赠送积分活动 1375461
关于科研通互助平台的介绍 1341639