亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A modelling approach based on Bayesian networks for dam risk analysis: Integration of machine learning algorithm and domain knowledge

贝叶斯网络 灵敏度(控制系统) 机器学习 计算机科学 领域(数学分析) 溢洪道 风险评估 领域知识 算法 人工智能 风险分析(工程) 工程类 数据挖掘 数学 岩土工程 计算机安全 医学 电子工程 数学分析
作者
Xianqi Tang,Anyi Chen,Jinrong He
出处
期刊:International journal of disaster risk reduction [Elsevier BV]
卷期号:71: 102818-102818 被引量:18
标识
DOI:10.1016/j.ijdrr.2022.102818
摘要

The safety of dams, especially that of earthen dams, is threatened by various uncertain and interrelated risk factors. Consequently, dam risk analysis is vital for dam safety governance and failure prevention. A Bayesian network (BN) is an effective tool for this issue as its excellent ability in representing uncertainty and reasoning. Most previous studies have relied solely on domain knowledge (DK) to establish BN models, leading to inefficient and subjective results when solving complex systems. The increasing observations has improved the viability of using machine learning (ML) to automatically model complex systems. Herein, ML algorithms are used to develop automatic BN models for risk analysis of earthen dams in the USA, which are subsequently modified using DK. The results revealed that the automatic BN models can identify some potential causal relationships that are ignored by DK, whereas some impractical causalities identified in the automatic BN models can be modified by using DK. Moreover, the modified BN model has a better performance in the prediction of earthen dam failure with an average overall accuracy of 84.6%, compared to 80.3% with the automatic BN models, and 76.5% with a manual BN model created using only DK. Using the modified BN models, the three foremost risk factors based on their influence and sensitivity analysis were identified to be extreme flood, malfunction of spillway or gate, and slope instability. Our study highlights that the integration of ML algorithms and DK is an effective approach for developing reliable BN models for dam risk analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欧阳蛋蛋鸡完成签到 ,获得积分10
3秒前
miurny发布了新的文献求助10
14秒前
miurny完成签到,获得积分10
25秒前
26秒前
26秒前
Owen应助科研通管家采纳,获得10
26秒前
大个应助xbb88采纳,获得10
1分钟前
慕青应助xbb88采纳,获得10
1分钟前
2分钟前
爆米花应助科研通管家采纳,获得10
2分钟前
酷波er应助科研通管家采纳,获得10
2分钟前
2分钟前
沈惠映完成签到 ,获得积分10
2分钟前
2分钟前
Manzia完成签到,获得积分10
3分钟前
搜集达人应助Demi_Ming采纳,获得10
3分钟前
上官若男应助黄文怡采纳,获得10
3分钟前
王小凡完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
FashionBoy应助科研通管家采纳,获得10
4分钟前
GLv应助科研通管家采纳,获得10
4分钟前
上官若男应助科研通管家采纳,获得10
4分钟前
忧虑的安青完成签到,获得积分20
4分钟前
4分钟前
4分钟前
5分钟前
Demi_Ming发布了新的文献求助10
5分钟前
Panther完成签到,获得积分10
5分钟前
5分钟前
SciGPT应助Demi_Ming采纳,获得10
5分钟前
123完成签到,获得积分10
5分钟前
5分钟前
6分钟前
Demi_Ming发布了新的文献求助10
6分钟前
任性的一斩完成签到,获得积分10
6分钟前
Dr_an发布了新的文献求助10
6分钟前
小蘑菇应助科研通管家采纳,获得10
6分钟前
FashionBoy应助Dr_an采纳,获得30
6分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968492
求助须知:如何正确求助?哪些是违规求助? 3513278
关于积分的说明 11167211
捐赠科研通 3248622
什么是DOI,文献DOI怎么找? 1794386
邀请新用户注册赠送积分活动 875030
科研通“疑难数据库(出版商)”最低求助积分说明 804638