重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

A modelling approach based on Bayesian networks for dam risk analysis: Integration of machine learning algorithm and domain knowledge

贝叶斯网络 灵敏度(控制系统) 机器学习 计算机科学 领域(数学分析) 溢洪道 风险评估 领域知识 算法 人工智能 风险分析(工程) 工程类 数据挖掘 数学 岩土工程 计算机安全 医学 电子工程 数学分析
作者
Xianqi Tang,Anyi Chen,Jinrong He
出处
期刊:International journal of disaster risk reduction [Elsevier]
卷期号:71: 102818-102818 被引量:18
标识
DOI:10.1016/j.ijdrr.2022.102818
摘要

The safety of dams, especially that of earthen dams, is threatened by various uncertain and interrelated risk factors. Consequently, dam risk analysis is vital for dam safety governance and failure prevention. A Bayesian network (BN) is an effective tool for this issue as its excellent ability in representing uncertainty and reasoning. Most previous studies have relied solely on domain knowledge (DK) to establish BN models, leading to inefficient and subjective results when solving complex systems. The increasing observations has improved the viability of using machine learning (ML) to automatically model complex systems. Herein, ML algorithms are used to develop automatic BN models for risk analysis of earthen dams in the USA, which are subsequently modified using DK. The results revealed that the automatic BN models can identify some potential causal relationships that are ignored by DK, whereas some impractical causalities identified in the automatic BN models can be modified by using DK. Moreover, the modified BN model has a better performance in the prediction of earthen dam failure with an average overall accuracy of 84.6%, compared to 80.3% with the automatic BN models, and 76.5% with a manual BN model created using only DK. Using the modified BN models, the three foremost risk factors based on their influence and sensitivity analysis were identified to be extreme flood, malfunction of spillway or gate, and slope instability. Our study highlights that the integration of ML algorithms and DK is an effective approach for developing reliable BN models for dam risk analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jjj发布了新的文献求助10
刚刚
yu发布了新的文献求助10
刚刚
刚刚
ye发布了新的文献求助10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
2秒前
Hellenzz完成签到,获得积分10
3秒前
Jason2025完成签到,获得积分10
3秒前
ZS完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
dkkjdsfakjd发布了新的文献求助10
5秒前
Hsingee发布了新的文献求助10
7秒前
余在何发布了新的文献求助10
7秒前
筒子发布了新的文献求助10
7秒前
7秒前
ZhangDaying完成签到 ,获得积分10
8秒前
捶捶发布了新的文献求助10
9秒前
斯文败类应助苗条寒荷采纳,获得10
10秒前
科研通AI6应助yu采纳,获得10
10秒前
11秒前
传奇3应助小满采纳,获得10
11秒前
江阳宏发布了新的文献求助10
11秒前
酸菜余发布了新的文献求助10
11秒前
神樂彩兔发布了新的文献求助10
13秒前
芊芊完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
fuga发布了新的文献求助10
16秒前
16秒前
17秒前
17秒前
难过的曼香完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468049
求助须知:如何正确求助?哪些是违规求助? 4571603
关于积分的说明 14330660
捐赠科研通 4498112
什么是DOI,文献DOI怎么找? 2464315
邀请新用户注册赠送积分活动 1453064
关于科研通互助平台的介绍 1427739