A modelling approach based on Bayesian networks for dam risk analysis: Integration of machine learning algorithm and domain knowledge

贝叶斯网络 灵敏度(控制系统) 机器学习 计算机科学 领域(数学分析) 溢洪道 风险评估 领域知识 算法 人工智能 风险分析(工程) 工程类 数据挖掘 数学 岩土工程 计算机安全 医学 电子工程 数学分析
作者
Xianqi Tang,Anyi Chen,Jinrong He
出处
期刊:International journal of disaster risk reduction [Elsevier]
卷期号:71: 102818-102818 被引量:18
标识
DOI:10.1016/j.ijdrr.2022.102818
摘要

The safety of dams, especially that of earthen dams, is threatened by various uncertain and interrelated risk factors. Consequently, dam risk analysis is vital for dam safety governance and failure prevention. A Bayesian network (BN) is an effective tool for this issue as its excellent ability in representing uncertainty and reasoning. Most previous studies have relied solely on domain knowledge (DK) to establish BN models, leading to inefficient and subjective results when solving complex systems. The increasing observations has improved the viability of using machine learning (ML) to automatically model complex systems. Herein, ML algorithms are used to develop automatic BN models for risk analysis of earthen dams in the USA, which are subsequently modified using DK. The results revealed that the automatic BN models can identify some potential causal relationships that are ignored by DK, whereas some impractical causalities identified in the automatic BN models can be modified by using DK. Moreover, the modified BN model has a better performance in the prediction of earthen dam failure with an average overall accuracy of 84.6%, compared to 80.3% with the automatic BN models, and 76.5% with a manual BN model created using only DK. Using the modified BN models, the three foremost risk factors based on their influence and sensitivity analysis were identified to be extreme flood, malfunction of spillway or gate, and slope instability. Our study highlights that the integration of ML algorithms and DK is an effective approach for developing reliable BN models for dam risk analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xinL完成签到 ,获得积分10
1秒前
ahryue发布了新的文献求助10
2秒前
小宋娘亲完成签到 ,获得积分10
2秒前
花花屯屯完成签到 ,获得积分10
3秒前
赵哲完成签到 ,获得积分10
3秒前
高高从霜完成签到 ,获得积分10
3秒前
fdpb完成签到,获得积分10
4秒前
LBJ完成签到,获得积分10
4秒前
Lucas应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得10
5秒前
正己化人应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
唯为完成签到,获得积分10
8秒前
bi8bo完成签到,获得积分10
9秒前
虚心的清完成签到,获得积分10
9秒前
10秒前
10秒前
无脚鸟完成签到,获得积分10
13秒前
hyw完成签到,获得积分10
13秒前
ahryue完成签到,获得积分10
14秒前
One发布了新的文献求助10
15秒前
hah完成签到,获得积分10
15秒前
啸傲完成签到,获得积分10
15秒前
耀学菜菜发布了新的文献求助10
16秒前
coffee完成签到,获得积分10
17秒前
17秒前
Hqing完成签到 ,获得积分10
18秒前
CipherSage应助啸傲采纳,获得10
19秒前
高高的远山完成签到,获得积分10
19秒前
Alex完成签到,获得积分10
19秒前
邓娅琴完成签到 ,获得积分10
20秒前
tangli完成签到 ,获得积分10
21秒前
研友_Z119gZ完成签到 ,获得积分10
21秒前
苗苗043完成签到,获得积分10
22秒前
LuciusHe发布了新的文献求助10
22秒前
一叶扁舟0147完成签到,获得积分10
23秒前
wen完成签到,获得积分10
23秒前
excellent_shit完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5438892
求助须知:如何正确求助?哪些是违规求助? 4550041
关于积分的说明 14221525
捐赠科研通 4470993
什么是DOI,文献DOI怎么找? 2450100
邀请新用户注册赠送积分活动 1441072
关于科研通互助平台的介绍 1417644