制氢
化学
电解水
电解
电动势
磁场
化学物理
氢
原子物理学
物理化学
物理
有机化学
电极
量子力学
电解质
作者
Purnami Purnami,Nurkholis Hamidi,Mega Nur Sasongko,Eko Siswanto,Denny Widhiyanuriyawan,Ishardita Pambudi Tama,Willy Satrio Nugroho,I.N.G. Wardana
摘要
Static magnetic field (SMF) application in water electrolysis increases hydrogen production. However, the effect of the dynamic magnetic field (DMF) in water electrolysis is rarely studied. This study utilizes DMF to increase hydrogen production in water electrolysis. DMF was generated by rotating a plate-shaped magnet. As a result, DMF produces 23.1 mL H2, which almost doubled the 12.1 mL H2 of SMF. DMF increases the chance of hydrogen formation by weakening the covalent bond, hydrogen bond, and increase the ion transfer mobility as a result of additional magnetic field strength. This phenomenon consistent with the Faraday's law where fluctuating magnetic field generates an electromotive force that increases electric current density. The high electric current density alters hydroxide ion mobility as the interchanging magnetic force field by DMF increases the ions collision chance. The additional magnetic force by DMF has aligned more water molecules than DMF. Consequently, more water molecule dipoles are exposed during electrolysis. Hence, DMF eases the water-splitting process by shaking the water molecules, which continuously aligns the dipole and also energizes the water molecules. The energized water with higher kinetic energy is easier to split as the required ionization energy has reduced. This happens as the result of the spin-pair magnetic energy conversion that is stimulated by external magnetic field. The increase in rotational speed of magnetic rods does not significantly increase hydrogen evolution reaction and lower the electrolysis efficiency. This indicates the presence of DMF is more important for water electrolysis performance than the rotational speed of DMF. Conclusively, DMF enhances hydrogen evolution reaction by an increase in water kinetic energy and increase in ion transfer chance through dipole exposition.
科研通智能强力驱动
Strongly Powered by AbleSci AI