Discrete element simulations on the damaged surface hydrodynamics of tungsten powders with inert Ar gas

喷出物 阻力 粒子(生态学) 材料科学 机械 惰性气体 离散元法 化学物理 纳米技术 物理 复合材料 冶金 海洋学 量子力学 超新星 地质学
作者
Lei Pei,Jun Dong,Yang Zhang,Xiaofeng Shi,Dongjun Ma,Hao Pan,Pei Wang
出处
期刊:Journal of Applied Physics [American Institute of Physics]
卷期号:131 (2) 被引量:1
标识
DOI:10.1063/5.0077293
摘要

Ejecta of micrometer-sized particles from a shocked damaged metal surface into a gas environment are widely observed in the engineering fields. Investigating the transport of ejecta particles in the converging geometries is a challenging scientific issue. Rousculp et al. [“Damaged surface hydrodynamics (DSH) flash report,” Report No. LA-UR-15-22889, 2015] have studied the transport of shock-launched tungsten powders from a cylindrical metal surface into an inert gas. In the so-called damaged surface hydrodynamic experiments, the effect of gas species on powder transport was investigated. Distinctive phenomena were observed in all cases in which particles aggregated into radial spikes or stripes with an azimuthal modulation of n > 20, though the initial powder coating was highly controlled and the shock loading was believed to be azimuthally uniform. In this work, discrete element method coupling with magneto-hydrodynamic simulations was employed to explore the mechanism behind the experimental phenomena. Results showed that stripes may be originated from the non-uniform initial distribution and small velocity difference of particles. The intense particle collision during the shock launching caused the microstripe-like structures, which merged into macroscopic ones observed in the subsequent particle transport process. Lagrange tracking revealed the stripes at different moments consisted of different particles. Oblique collisions played an important role in the long-term transport of ejecta particles in the convergence geometries, while the drag force of gas showed little influence. This work will promote the understanding of dense particle–gas flow in converging geometries.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小胖发布了新的文献求助10
1秒前
奋斗洋葱发布了新的文献求助10
1秒前
英勇绮南完成签到,获得积分10
1秒前
明@钰发布了新的文献求助10
1秒前
梅子酒发布了新的文献求助10
1秒前
Lin_Yongqi完成签到 ,获得积分10
1秒前
2秒前
好困应助sun采纳,获得10
2秒前
sofia完成签到,获得积分10
2秒前
汉堡包应助点酒成诗采纳,获得10
3秒前
3秒前
白忆南发布了新的文献求助10
3秒前
3秒前
3秒前
Aliaoovo完成签到,获得积分10
5秒前
5秒前
李富贵儿~发布了新的文献求助10
5秒前
5秒前
Holiday完成签到,获得积分10
5秒前
小二郎应助安详书蝶采纳,获得10
5秒前
玉衡发布了新的文献求助10
6秒前
沉舟完成签到,获得积分10
6秒前
6秒前
Clover04应助Glngar采纳,获得10
7秒前
小胖完成签到,获得积分10
7秒前
xywang应助梅子酒采纳,获得10
7秒前
晴晴完成签到,获得积分10
7秒前
wufel完成签到,获得积分10
8秒前
金2022发布了新的文献求助20
8秒前
8秒前
8秒前
111完成签到,获得积分20
9秒前
英俊的铭应助无限的怜阳采纳,获得20
10秒前
Hayden完成签到,获得积分10
10秒前
桐桐应助yls采纳,获得10
10秒前
11秒前
缥缈的芷卉完成签到 ,获得积分20
11秒前
彭宝淦发布了新的文献求助10
12秒前
今后应助禹丹烟采纳,获得10
13秒前
白华苍松发布了新的文献求助10
14秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144018
求助须知:如何正确求助?哪些是违规求助? 2795670
关于积分的说明 7815932
捐赠科研通 2451682
什么是DOI,文献DOI怎么找? 1304642
科研通“疑难数据库(出版商)”最低求助积分说明 627255
版权声明 601419