Discrete element simulations on the damaged surface hydrodynamics of tungsten powders with inert Ar gas

喷出物 阻力 粒子(生态学) 材料科学 机械 惰性气体 离散元法 化学物理 纳米技术 物理 复合材料 冶金 海洋学 量子力学 超新星 地质学
作者
Lei Pei,Zongqiang Ma,Yang Zhang,Xiaofeng Shi,Dongjun Ma,Hao Pan,Pei Wang
出处
期刊:Journal of Applied Physics [American Institute of Physics]
卷期号:131 (2) 被引量:1
标识
DOI:10.1063/5.0077293
摘要

Ejecta of micrometer-sized particles from a shocked damaged metal surface into a gas environment are widely observed in the engineering fields. Investigating the transport of ejecta particles in the converging geometries is a challenging scientific issue. Rousculp et al. [“Damaged surface hydrodynamics (DSH) flash report,” Report No. LA-UR-15-22889, 2015] have studied the transport of shock-launched tungsten powders from a cylindrical metal surface into an inert gas. In the so-called damaged surface hydrodynamic experiments, the effect of gas species on powder transport was investigated. Distinctive phenomena were observed in all cases in which particles aggregated into radial spikes or stripes with an azimuthal modulation of n > 20, though the initial powder coating was highly controlled and the shock loading was believed to be azimuthally uniform. In this work, discrete element method coupling with magneto-hydrodynamic simulations was employed to explore the mechanism behind the experimental phenomena. Results showed that stripes may be originated from the non-uniform initial distribution and small velocity difference of particles. The intense particle collision during the shock launching caused the microstripe-like structures, which merged into macroscopic ones observed in the subsequent particle transport process. Lagrange tracking revealed the stripes at different moments consisted of different particles. Oblique collisions played an important role in the long-term transport of ejecta particles in the convergence geometries, while the drag force of gas showed little influence. This work will promote the understanding of dense particle–gas flow in converging geometries.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ZL完成签到,获得积分10
1秒前
蜗牛完成签到,获得积分10
3秒前
轻松新之发布了新的文献求助10
5秒前
田様应助巫马尔槐采纳,获得10
5秒前
十有五完成签到,获得积分10
5秒前
孝顺的尔竹完成签到,获得积分10
6秒前
ZIS完成签到,获得积分10
6秒前
科研通AI6应助李海艳采纳,获得10
8秒前
8秒前
Pheonix1998完成签到,获得积分10
9秒前
14秒前
科研通AI6应助ZIS采纳,获得10
14秒前
Alina完成签到 ,获得积分10
17秒前
18秒前
简简单单完成签到,获得积分10
19秒前
19秒前
20秒前
陈爽er完成签到 ,获得积分10
20秒前
咸鱼打滚发布了新的文献求助10
24秒前
领导范儿应助清脆的迎松采纳,获得10
25秒前
angelalxj发布了新的文献求助10
25秒前
彭于晏应助zhenyu0430采纳,获得10
26秒前
26秒前
阳佟曼云完成签到,获得积分10
27秒前
蕴蝶发布了新的文献求助10
27秒前
zz完成签到 ,获得积分10
27秒前
Akim应助two采纳,获得20
29秒前
小鱼歪优发布了新的文献求助10
30秒前
加油少年完成签到,获得积分10
30秒前
CipherSage应助独指蜗牛采纳,获得30
30秒前
Jasper应助hoku采纳,获得10
30秒前
ZSZ完成签到,获得积分10
31秒前
maoer完成签到,获得积分10
31秒前
清脆的迎松完成签到,获得积分10
33秒前
33秒前
34秒前
35秒前
科研通AI2S应助蕴蝶采纳,获得10
36秒前
36秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5225359
求助须知:如何正确求助?哪些是违规求助? 4397026
关于积分的说明 13685643
捐赠科研通 4261608
什么是DOI,文献DOI怎么找? 2338513
邀请新用户注册赠送积分活动 1335950
关于科研通互助平台的介绍 1291890