Data Mining-Based and Network Pharmacology-Based Analysis of Medication Rules and Action Mechanism of Professor Zhou Zhongying in Lung Cancer Treatment

肺癌 医学 AKT1型 中医药 系统药理学 癌症 药方 传统医学 药理学 PI3K/AKT/mTOR通路 肿瘤科 内科学 替代医学 细胞凋亡 生物 病理 药品 生物化学
作者
Song Wang,Yue Li,Kongfa Hu,Fang Ye,Liu Li
标识
DOI:10.1109/bibm52615.2021.9669905
摘要

Objective. To investigate the medication rules and mechanism of Chinese medicine for lung cancer treated by professor Zhou Zhongying. Methods. Medical records of lung cancer patients treated by Professor Zhou were obtained and analyzed by data mining methods to arrive at the core herb combination. The relevant techniques of network pharmacology were applied to obtain the effective compounds, targets and signal pathways of the herb combination. Results. A total of 457 prescriptions were selected, involving 279 herbs. The high-frequency core herbs for lung cancer treatment were Glehniae Radix (Beishashen), Cremastrae Pseudobulbus (Shancigu), Ophiopogonis Radix (Maidong), Adenophprae Radix (Nanshashen). Through association rules and cluster analysis, the core prescriptions of 4 herbs were obtained. The four herbs were screened to obtain 19 active ingredients, and 193 potential targets were related to lung cancer treatment. Core herb combination perform its function for lung cancer by regulating the targets, such as AKT1, VEGFA, IL6, MAPK3, HIV-1A, TP53.The GO analysis results showed that a total of 285 GO entries were obtained, involving inflammatory response, and apoptotic process. The KEGG analysis was involved 113 terms, which showed that the targets of core prescription for lung cancer treatment mainly focused on PI3K-Akt, MAPK, MicroRNAs in cancer, HIF-1signaling pathway, and HTLV-1 infection signaling pathways. Conclusion. This study obtained the core prescription of professor Zhou in treatment of lung cancer by data mining techniques and explored the action mechanisms of the core herb combination by network pharmacology. This article reveals the core herb combination make effects through multicomponent, multi-target, and multi-pathway, and provides reference for clinical related research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助tkdzjr12345采纳,获得10
刚刚
指哪打哪完成签到,获得积分10
1秒前
WYN完成签到 ,获得积分10
1秒前
漫步云端完成签到 ,获得积分10
2秒前
莫等闲完成签到,获得积分10
3秒前
lf-leo完成签到,获得积分10
5秒前
可爱的函函应助nyfz2002采纳,获得10
5秒前
汉堡包应助迷你的冰巧采纳,获得10
5秒前
6秒前
6秒前
半圆亻完成签到 ,获得积分10
7秒前
llmm完成签到,获得积分10
7秒前
可爱的函函应助Yuuki采纳,获得10
10秒前
沐橘发布了新的文献求助10
10秒前
ZHANG完成签到,获得积分10
13秒前
夜泊完成签到 ,获得积分10
14秒前
wang0626完成签到 ,获得积分10
14秒前
14秒前
清漪完成签到,获得积分10
14秒前
WD完成签到 ,获得积分10
15秒前
张小度ever完成签到 ,获得积分10
15秒前
含蓄的小熊猫完成签到 ,获得积分10
15秒前
hao完成签到,获得积分10
16秒前
迷你的冰巧完成签到,获得积分10
16秒前
feitian201861完成签到,获得积分10
17秒前
小吃完成签到,获得积分10
17秒前
含糊的茹妖完成签到 ,获得积分10
18秒前
19秒前
hao发布了新的文献求助10
19秒前
先锋老刘001发布了新的文献求助150
20秒前
en完成签到,获得积分10
20秒前
20秒前
YC完成签到,获得积分10
21秒前
Davidfly20完成签到,获得积分10
24秒前
谢小盟发布了新的文献求助200
24秒前
冷傲菠萝完成签到 ,获得积分10
25秒前
polo发布了新的文献求助10
25秒前
顾矜应助sys采纳,获得10
26秒前
bilibala完成签到,获得积分10
26秒前
奋斗的大白菜完成签到,获得积分10
27秒前
高分求助中
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3121786
求助须知:如何正确求助?哪些是违规求助? 2772169
关于积分的说明 7711621
捐赠科研通 2427558
什么是DOI,文献DOI怎么找? 1289401
科研通“疑难数据库(出版商)”最低求助积分说明 621451
版权声明 600169