On the identifiability of the isoform deconvolution problem: application to select the proper fragment length in an RNA-seq library

片段(逻辑) 反褶积 可识别性 基因 算法 计算生物学 基因亚型 计算机科学 生物 转录组
作者
Juan A Ferrer-Bonsoms,Xabier Morales,Pegah T Afshar,Wing H Wong,Angel Rubio
出处
期刊:Bioinformatics [Oxford University Press]
标识
DOI:10.1093/bioinformatics/btab873
摘要

Isoform deconvolution is an NP-hard problem. The accuracy of the proposed solutions are far from perfect. At present, it is not known if gene structure and isoform concentration can be uniquely inferred given paired-end reads, and there is no objective method to select the fragment length to improve the number of identifiable genes. Different pieces of evidence suggest that the optimal fragment length is gene-dependent, stressing the need for a method that selects the fragment length according to a reasonable trade-off across all the genes in the whole genome.A gene is considered to be identifiable if it is possible to get both the structure and concentration of its transcripts univocally. Here, we present a method to state the identifiability of this deconvolution problem. Assuming a given transcriptome and that the coverage is sufficient to interrogate all junction reads of the transcripts, this method states whether or not a gene is identifiable given the read length and fragment length distribution.Applying this method using different read and fragment length combinations, the optimal average fragment length for the human transcriptome is around 400-600nt for coding genes and 150-200nt for long non-coding RNAs. The optimal read length is the largest one that fits in the fragment length. It is also discussed the potential profit of combining several libraries to reconstruct the transcriptome. Combining two libraries of very different fragment lengths results in a significant improvement in gene identifiability.Code is available in GitHub (https://github.com/JFerrer-B/transcriptome-identifiability).Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孤独的狼完成签到,获得积分10
1秒前
qiaoshan_Jason完成签到,获得积分10
2秒前
脑洞疼应助爱学习的子正采纳,获得10
3秒前
zhang完成签到,获得积分10
3秒前
3秒前
Jasper应助科研通管家采纳,获得10
4秒前
deallyxyz应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
4秒前
Orange应助穆亦擎采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
乐乐应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
5秒前
大个应助科研通管家采纳,获得10
5秒前
Owen应助科研通管家采纳,获得10
5秒前
CipherSage应助科研通管家采纳,获得10
6秒前
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
May应助科研通管家采纳,获得20
6秒前
顾矜应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
7秒前
木之尹完成签到 ,获得积分10
8秒前
hamburger发布了新的文献求助30
9秒前
ECHO发布了新的文献求助10
10秒前
asd发布了新的文献求助10
10秒前
miraclehit完成签到,获得积分10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966029
求助须知:如何正确求助?哪些是违规求助? 3511354
关于积分的说明 11157644
捐赠科研通 3245890
什么是DOI,文献DOI怎么找? 1793218
邀请新用户注册赠送积分活动 874262
科研通“疑难数据库(出版商)”最低求助积分说明 804296