神经科学
兴奋性突触后电位
突触可塑性
中间神经元
抑制性突触后电位
突触后电位
长时程增强
前额叶皮质
变质塑性
生物
基底外侧杏仁核
神经可塑性
作者
Max E. Joffe,James Maksymetz,Joseph R. Luchsinger,Shalini Dogra,Anthony S. Ferranti,Deborah J. Luessen,Isabel M. Gallinger,Zixiu Xiang,Hannah Branthwaite,Patrick R. Melugin,Kellie M. Williford,Samuel W. Centanni,Brenda C. Shields,Craig W. Lindsley,Erin S. Calipari,Cody A. Siciliano,Colleen M. Niswender,Michael R. Tadross,Danny G. Winder,P. Jeffrey Conn
出处
期刊:Neuron
[Cell Press]
日期:2022-01-01
卷期号:110 (6): 1068-1083.e5
被引量:3
标识
DOI:10.1016/j.neuron.2021.12.027
摘要
Inhibitory interneurons orchestrate prefrontal cortex (PFC) activity, but we have a limited understanding of the molecular and experience-dependent mechanisms that regulate synaptic plasticity across PFC microcircuits. We discovered that mGlu5 receptor activation facilitates long-term potentiation at synapses from the basolateral amygdala (BLA) onto somatostatin-expressing interneurons (SST-INs) in mice. This plasticity appeared to be recruited during acute restraint stress, which induced intracellular calcium mobilization within SST-INs and rapidly potentiated postsynaptic strength onto SST-INs. Restraint stress and mGlu5 receptor activation each augmented BLA recruitment of SST-IN phasic feedforward inhibition, shunting information from other excitatory inputs, including the mediodorsal thalamus. Finally, studies using cell-type-specific mGlu5 receptor knockout mice revealed that mGlu5 receptor function in SST-expressing cells is necessary for restraint stress-induced changes to PFC physiology and related behaviors. These findings provide new insights into interneuron-specific synaptic plasticity mechanisms and suggest that SST-IN microcircuits may be promising targets for treating stress-induced psychiatric diseases.
科研通智能强力驱动
Strongly Powered by AbleSci AI