Rapid evaluation of texture parameters of Tan mutton using hyperspectral imaging with optimization algorithms

咀嚼度 高光谱成像 数学 偏最小二乘回归 算法 最小二乘支持向量机 人工智能 支持向量机 模式识别(心理学) 计算机科学 统计 食品科学 化学
作者
Jingjing Zhang,Yonghui Ma,Guishan Liu,Naiyun Fan,Yue Li,Yourui Sun
出处
期刊:Food Control [Elsevier BV]
卷期号:135: 108815-108815 被引量:48
标识
DOI:10.1016/j.foodcont.2022.108815
摘要

The detection of meat texture is of great value because it is the key factor that drives consumer purchasing decisions. In this study, a hyperspectral imaging (HSI) system was utilized to determine the texture parameters of Tan mutton. In order to observe the influence of mutton spectra during different refrigeration periods for modeling, hyperspectral images of the Tan mutton samples were collected in the 900–1700 nm spectral range, and the correction models of Tan mutton texture parameters were established. The four machine learning algorithms, such as partial least squares regression (PLSR), least squares support vector machine (LSSVM), random forest (RF), and decision trees (DT), were developed to establish the spectral models based on the characteristic bands selected by different extraction strategies including interval variable iterative space shrinkage approach (iVISSA), competitive adaptive reweighted sampling (CARS), successive projection algorithm (SPA) and variable combination population analysis (VCPA). The results showed that the LSSVM-iVISSA-CARS models exhibited excellent performance in predicting hardness and gumminess with root-mean-square errors (RMSEP) of 5.259 and 3.051 as well as the coefficient of determination for the prediction data set (Rp2) of 0.986 and 0.984 respectively. Good performances were achieved with Rp2 of 0.987 and RMSEP of 4.970 with the LSSVM-iVISSA-SPA model for chewiness, respectively. Therefore, HSI has potential for the evaluation and prediction of texture parameters in Tan mutton.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助otaro采纳,获得10
1秒前
无心的星月完成签到,获得积分20
1秒前
SYLH应助科研通管家采纳,获得80
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
SYLH应助科研通管家采纳,获得10
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
正文发布了新的文献求助30
3秒前
3秒前
Akim应助无心的星月采纳,获得30
7秒前
汪汪队立大功完成签到,获得积分10
7秒前
蜡笔小欣发布了新的文献求助20
8秒前
星辰雪顶完成签到,获得积分10
8秒前
vipggl发布了新的文献求助10
9秒前
无花果应助忐忑的阑香采纳,获得10
12秒前
阿良完成签到 ,获得积分10
15秒前
jjj发布了新的文献求助10
15秒前
19秒前
科科科研完成签到,获得积分10
22秒前
22秒前
小二郎应助Maestro_S采纳,获得10
23秒前
星辰大海应助ProfCTS采纳,获得10
25秒前
zhang发布了新的文献求助10
25秒前
善学以致用应助meng采纳,获得10
27秒前
27秒前
29秒前
小橙子完成签到,获得积分10
29秒前
正文完成签到,获得积分10
31秒前
orixero应助jjj采纳,获得10
33秒前
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775525
求助须知:如何正确求助?哪些是违规求助? 3321190
关于积分的说明 10203825
捐赠科研通 3036017
什么是DOI,文献DOI怎么找? 1665907
邀请新用户注册赠送积分活动 797196
科研通“疑难数据库(出版商)”最低求助积分说明 757766