超级电容器
材料科学
阴极
阳极
电容
电解质
功率密度
石墨烯
化学工程
电化学
储能
结晶度
水溶液
电池(电)
电流密度
电极
纳米技术
复合材料
化学
功率(物理)
物理
物理化学
量子力学
工程类
作者
Hao Ren,Lu Zhang,Jingyuan Zhang,Tianyu Miao,Ruiwen Yuan,Wenxiao Chen,Zhuo Wang,Junhe Yang,Bin Zhao
出处
期刊:Carbon
[Elsevier]
日期:2022-07-07
卷期号:198: 46-56
被引量:45
标识
DOI:10.1016/j.carbon.2022.07.008
摘要
It is a critical challenge to build electrochemical energy storage devices with both high energy density and remarkable power density. Although zinc ion hybrid supercapacitors (Zn-ion HSCs) with battery-type cathode and capacitor-type anode have attracted widespread attention, cathode materials possessing high stability and good electrical conductivity are still worth pursuing. Herein, Na+ pre-intercalated δ-MnO2 nanoflakes (Na0.11MnO2) were grown on three-dimensional graphene (3DG) by a facile electrodeposition method. Benefiting from the in situ growth of MnO2 on high-crystallinity graphene and Na+ pre-intercalation in layered δ-MnO2, the Na0.11MnO2/3DG electrode shows a superior specific capacitance of 1240 F g−1 at the current density of 0.2 A g−1 and excellent cycling stability with 90% capacitance retention after 9000 cycles in 2 M ZnSO4/0.2 M MnSO4 aqueous electrolyte. Moreover, the assembled Na0.11MnO2/3DG//AC Zn-ion HSCs device delivers superb energy density of 74.3 Wh kg−1 and high power density of 9.6 kW kg−1, as well as satisfactory cycling lifespan with 83% capacitance retention after 5000 cycles. This work may pave a way for rational design of layer-structured MnO2 cathode in aqueous energy storage devices with both high energy and power densities.
科研通智能强力驱动
Strongly Powered by AbleSci AI