清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Effective deep learning based multimodal sentiment analysis from unstructured big data

计算机科学 情绪分析 卷积神经网络 人工智能 深度学习 组分(热力学) 可视化 分类器(UML) Python(编程语言) 自然语言处理 机器学习 情报检索 物理 热力学 操作系统
作者
Swasthika Jain Thandaga Jwalanaiah,I. Jeena Jacob,Ajay K. Mandava
出处
期刊:Expert Systems [Wiley]
卷期号:40 (1)
标识
DOI:10.1111/exsy.13096
摘要

More recently, as images, memes and graphics interchange formats have dominated social feeds, typographic/infographic visual content has emerged as an important social media component. This multimodal text combines text and image, defining a novel visual language that must be analysed because it has the potential to modify, confirm or grade the sentiment's polarity. The problem is how to effectively use information from the visual and textual content in image-text posts. This article presents a new deep learning-based multimodal sentiment analysis (MSA) model using multimodal data such as images, text and multimodal text (image with embedded text). The text analytic unit, the discretization control unit, the picture analytic component and the decision-making component are all included in this system. The discretization unit separates the text from the picture using the variant and channel augmented maximally stable extremal regions (VCA-MSERs) technique, which are then analysed as discrete elements and fed into the appropriate image and text analytics units. The text analytics system utilizes a stacked recurrent neural network with multilevel attention and feedback module (SRNN-MAFM) to detect the sentiment of the text. A deep convolutional neural network (CNN) structure with parallel-dilated convolution and self-attention module (PDC-SAM) is developed to forecast the emotional response to visual content. Finally, the decision component employs a Boolean framework including an OR function to evaluate and classify the output into three fine-grained sentiment classes: positive, neutral and negative. The proposed work is simulated in the python platform using the STS-Gold, Flickr 8k and B-T4SA datasets for sentiment analysis of text and visual and multimodal text. Simulation outcomes proved that the suggested method achieved better accuracy of 97.8%, 97.7% and 90% for text, visual and MSA individually compared to other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
何木木完成签到 ,获得积分10
2秒前
6秒前
47秒前
laoli2022完成签到,获得积分10
50秒前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
kuyi完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
volvoamg发布了新的文献求助10
2分钟前
贾南烟发布了新的文献求助10
2分钟前
2分钟前
woxinyouyou完成签到,获得积分0
3分钟前
3分钟前
Jarvis Lin应助贾南烟采纳,获得10
4分钟前
TiY完成签到 ,获得积分10
4分钟前
标致的安荷完成签到,获得积分10
4分钟前
5分钟前
Candy完成签到 ,获得积分10
6分钟前
禾斗石开发布了新的文献求助10
6分钟前
6分钟前
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
8分钟前
8分钟前
禾斗石开完成签到,获得积分10
8分钟前
9分钟前
10分钟前
11分钟前
11分钟前
11分钟前
11分钟前
12分钟前
华师发布了新的文献求助10
12分钟前
所所应助华师采纳,获得10
13分钟前
13分钟前
舒适仰发布了新的文献求助10
13分钟前
13分钟前
科研通AI2S应助科研通管家采纳,获得10
13分钟前
舒适的方盒完成签到 ,获得积分10
13分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311205
求助须知:如何正确求助?哪些是违规求助? 2943920
关于积分的说明 8516766
捐赠科研通 2619301
什么是DOI,文献DOI怎么找? 1432193
科研通“疑难数据库(出版商)”最低求助积分说明 664520
邀请新用户注册赠送积分活动 649810