The advanced lung cancer inflammation index is the optimal inflammatory biomarker of overall survival in patients with lung cancer

医学 肺癌 内科学 危险系数 比例危险模型 肿瘤科 接收机工作特性 癌症 置信区间 单变量分析 多元分析 生物标志物 生物化学 化学
作者
Mengmeng Song,Qi Zhang,Chunhua Song,Tong Liu,Xi Zhang,Guo‐Tian Ruan,Meng Tang,Hailun Xie,Heyang Zhang,Yi‐Zhong Ge,Xiangrui Li,Kangping Zhang,Ming Yang,Qinqin Li,Xiaoyue Liu,Shiqi Lin,Yu Xu,Hongxia Xu,Kunhua Wang,Wei Li,Hanping Shi
出处
期刊:Journal of Cachexia, Sarcopenia and Muscle [Wiley]
卷期号:13 (5): 2504-2514 被引量:52
标识
DOI:10.1002/jcsm.13032
摘要

Malnutrition and systemic inflammatory responses are associated with poor overall survival (OS) in lung cancer patients, but it remains unclear which biomarkers are better for predicting their prognosis. This study tried to determine the best one among the existing common nutrition/inflammation-based indicators of OS for patients with lung cancer.There were 16 nutrition or systemic inflammation-based indicators included in this study. The cut-off points for the indicators were calculated using maximally selected rank statistics. The OS was evaluated using the Kaplan-Meier estimator, and univariate and multivariate Cox proportional hazard models were used to determine the relationship between the indicators and OS. A time-dependent receiver operating characteristic curves (time-ROC) and C-index were calculated to assess the predictive ability of the different indicators.There were 1772 patients with lung cancer included in this study. In univariate analysis, all 16 indicators were significantly associated with OS of the patients (all P < 0.001). Except for platelet-to-lymphocyte ratio, all other indicators were independent predictors of OS in multivariate analysis (all P < 0.05). Low advanced lung cancer inflammation index (ALI) was associated with higher mortality risk of lung cancer [hazard ratio, 1.30; 95% confidence interval (CI), 1.13-1.49]. The results of the time-AUC and C-index analyses indicated that the ALI (C-index: 0.611) had the best predictive ability on the OS in patients with lung cancer. In different sub-groups, the ALI was the best indicator for predicting the OS of lung cancer patients regardless of sex (C-index, 0.609 for men and 0.613 for women) or smoking status (C-index, 0.629 for non-smoker and 0.601 for smoker) and in patients aged <65 years (C-index, 0.613). However, the modified Glasgow prognostic score was superior to the other indicators in non-small cell lung cancer patients (C-index, 0.639) or patients aged ≥65 years (C-index, 0.610), and the glucose-to-lymphocyte ratio performed better prognostic ability in patients with small cell lung cancer (C-index, 0.601).The prognostic ability of the ALI is superior to the other inflammation/nutrition-based indicators for all patients with lung cancer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助木卫二采纳,获得10
1秒前
风中雨竹发布了新的文献求助10
3秒前
5秒前
5秒前
5秒前
科研通AI6应助科研通管家采纳,获得20
7秒前
科研通AI6应助科研通管家采纳,获得200
7秒前
7秒前
wanci应助科研通管家采纳,获得10
7秒前
7秒前
科目三应助科研通管家采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
wanci应助科研通管家采纳,获得10
7秒前
打打应助科研通管家采纳,获得10
7秒前
彭于晏应助科研通管家采纳,获得10
7秒前
无极微光应助科研通管家采纳,获得20
7秒前
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
8秒前
思源应助科研通管家采纳,获得10
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
8秒前
geqian发布了新的文献求助10
8秒前
Ka发布了新的文献求助10
8秒前
10秒前
单单来迟发布了新的文献求助10
10秒前
华桦子发布了新的文献求助10
11秒前
畅快的静芙完成签到,获得积分10
12秒前
Dou完成签到,获得积分10
14秒前
董海晴发布了新的文献求助10
16秒前
FashionBoy应助123456采纳,获得10
17秒前
吴玉杰完成签到,获得积分10
17秒前
blue完成签到,获得积分10
19秒前
李健的小迷弟应助远方采纳,获得10
19秒前
yznfly应助flying采纳,获得50
19秒前
21秒前
谨慎的CZ完成签到 ,获得积分10
22秒前
共享精神应助叶诗柳采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601826
求助须知:如何正确求助?哪些是违规求助? 4687194
关于积分的说明 14847943
捐赠科研通 4682030
什么是DOI,文献DOI怎么找? 2539559
邀请新用户注册赠送积分活动 1506378
关于科研通互助平台的介绍 1471340