Few shot cross equipment fault diagnosis method based on parameter optimization and feature mertic

计算机科学 断层(地质) 公制(单位) 人工智能 参数统计 特征(语言学) 数据挖掘 机器学习 最优化问题 相似性(几何) 模式识别(心理学) 算法 数学 工程类 统计 图像(数学) 地质学 哲学 地震学 语言学 运营管理
作者
Hongfeng Tao,Long Cheng,Jier Qiu,Vladimir Stojanović
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:33 (11): 115005-115005 被引量:136
标识
DOI:10.1088/1361-6501/ac8368
摘要

Abstract With the rapid development of industrial informatization and deep learning technology, modern data-driven fault diagnosis (MIFD) methods based on deep learning have been receiving attention from the industry. However, most of these methods require sufficient training samples to achieve the desired diagnostic effect, and the scarcity of fault samples in the actual industrial environment leads to the limitation of the development of MIFD methods. In addition, data-driven fault diagnosis methods often need to face cross-load or even cross-domain problems across different devices due to changes in equipment operating conditions and production requirements. In this paper, we design a parameter optimization and feature metric-based fault diagnosis method with few samples, called model unknown matching network model, for the problem of sparse fault samples and cross-domain between data sets in real industrial environments. The method combines both a parametric optimization-based meta-learning network, which extracts optimization information to adapt between different domains, and a metric-based metric learning network, which extracts metric information for similarity discriminations. The experimental results show that the method outperforms the current baseline method for the five-shot fault diagnosis problem of bearings under limited data conditions and achieves an accuracy of up to 94.4 % in cross-device diagnosis experiments from bearings to gas regulators, indicating the feasibility of the method. The features are visualized by T-SNE to show the validity of the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
锦鲤小然完成签到,获得积分10
1秒前
情怀应助李lailai采纳,获得10
3秒前
phonon完成签到,获得积分10
3秒前
Nikki完成签到,获得积分10
3秒前
顾月发布了新的文献求助10
4秒前
ken完成签到,获得积分10
4秒前
5秒前
hutu的小朱发布了新的文献求助10
5秒前
8秒前
8秒前
婧婧婧发布了新的文献求助10
9秒前
tayslay发布了新的文献求助10
10秒前
Li完成签到,获得积分10
10秒前
12秒前
深情安青应助风清扬采纳,获得10
13秒前
liao应助闫闫采纳,获得10
14秒前
科研通AI6应助碗碗采纳,获得10
15秒前
Nikki发布了新的文献求助10
15秒前
tayslay完成签到,获得积分20
15秒前
16秒前
CipherSage应助亦玉采纳,获得10
16秒前
华仔应助顶顶顶采纳,获得10
17秒前
17秒前
wei发布了新的文献求助10
17秒前
18秒前
科研通AI6应助zejnvoreoi采纳,获得10
18秒前
万能图书馆应助学术垃圾采纳,获得10
19秒前
科研通AI6应助学术垃圾采纳,获得10
19秒前
情怀应助学术垃圾采纳,获得10
19秒前
斯文败类应助学术垃圾采纳,获得10
19秒前
开心完成签到 ,获得积分10
20秒前
20秒前
任志政完成签到 ,获得积分10
20秒前
陶醉的马里奥完成签到,获得积分10
21秒前
21秒前
江睿曦发布了新的文献求助10
22秒前
丰富的慕卉完成签到,获得积分10
22秒前
24秒前
24秒前
胖虎啊完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458527
求助须知:如何正确求助?哪些是违规求助? 4564580
关于积分的说明 14295592
捐赠科研通 4489446
什么是DOI,文献DOI怎么找? 2459080
邀请新用户注册赠送积分活动 1448864
关于科研通互助平台的介绍 1424474