Blockchain Empowered Federated Learning for Data Sharing Incentive Mechanism

计算机科学 联合学习 声誉 激励 数据共享 质量(理念) 方案(数学) 机制(生物学) 机器学习 建筑 人工智能 知识管理 计算机安全 视觉艺术 社会学 数学 社会科学 数学分析 艺术 微观经济学 经济 病理 认识论 替代医学 哲学 医学
作者
Zexin Wang,Biwei Yan,Anming Dong
出处
期刊:Procedia Computer Science [Elsevier]
卷期号:202: 348-353 被引量:10
标识
DOI:10.1016/j.procs.2022.04.047
摘要

In the machine learning, data sharing between different participants can increase the amount of data, improve the quality of the dataset, and thereby improve the quality of the model. Under the condition of data supervision, federated learning, as a distributed machine learning, aims to protect data while training models through collaboration among all parties to achieve data sharing and improve model quality. However, there are still some issues. For instance, the lack of trust between the participants makes it impossible to establish a secure and reliable sharing mechanism. In addition, how to fairly share the benefits generated by the model, identify honest participants and punish malicious participants is still a challenge. In this paper, we propose a new federated learning scheme based on blockchain architecture for federated learning data sharing. Moreover, an incentive mechanism based on reputation points and Shaply values is proposed to improve the sustainability of the federated learning system, which provides a credible participation mechanism for data sharing based on federated learning and fair incentives. The experimental results and analysis show that the loss of federated learning is more smooth than that of centralized machine learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
芝麻糊发布了新的文献求助20
1秒前
3秒前
LMX完成签到 ,获得积分10
4秒前
4秒前
认真的小熊饼干完成签到,获得积分10
5秒前
小蘑菇应助小熊欧尼采纳,获得10
6秒前
7秒前
嘿嘿发布了新的文献求助10
7秒前
112231发布了新的文献求助10
8秒前
无花果应助sunishope采纳,获得10
8秒前
zakarya完成签到,获得积分10
8秒前
在水一方应助sunny采纳,获得10
8秒前
8秒前
shasha发布了新的文献求助10
8秒前
Tying应助Hz123456采纳,获得10
11秒前
12秒前
Hello应助溯桀采纳,获得10
15秒前
Rururu发布了新的文献求助10
16秒前
沐风发布了新的文献求助10
16秒前
16秒前
17秒前
榴莲姑娘完成签到 ,获得积分10
18秒前
wanci应助纯情的傲儿采纳,获得10
18秒前
19秒前
zao关注了科研通微信公众号
20秒前
田様应助jiabaoyu采纳,获得10
20秒前
21秒前
21秒前
111发布了新的文献求助10
22秒前
66发布了新的文献求助10
22秒前
稍远发布了新的文献求助20
22秒前
23秒前
23秒前
24秒前
24秒前
起点发布了新的文献求助10
24秒前
妮妮发布了新的文献求助10
25秒前
25秒前
ou发布了新的文献求助10
26秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310754
求助须知:如何正确求助?哪些是违规求助? 2943470
关于积分的说明 8515381
捐赠科研通 2618826
什么是DOI,文献DOI怎么找? 1431439
科研通“疑难数据库(出版商)”最低求助积分说明 664468
邀请新用户注册赠送积分活动 649675