Unsupervised Point Cloud Registration by Learning Unified Gaussian Mixture Models

点云 计算机科学 人工智能 混合模型 杠杆(统计) 聚类分析 模式识别(心理学) 无监督学习 概率逻辑 转化(遗传学) 噪音(视频) 机器学习 数据挖掘 图像(数学) 基因 化学 生物化学
作者
Xiaoshui Huang,Sheng Li,Yifan Zuo,Yuming Fang,Jian Zhang,Xiaowei Zhao
出处
期刊:IEEE robotics and automation letters 卷期号:7 (3): 7028-7035 被引量:18
标识
DOI:10.1109/lra.2022.3180443
摘要

Sampling noise and density variation widely exist in the point cloud acquisition process, leading to few accurate point-to-point correspondences. Since they rely on point-to-point correspondence search, existing state-of-the-art point cloud registration methods face difficulty in overcoming the sampling noise and density variation accurately or efficiently. Moreover, the recent state-of-the-art learning-based methods requires ground-truth transformation as supervised information which lead to large labor costs in real scenes. In this paper, our motivation is that two point-clouds are considered two samples from a unified Gaussian Mixture Model (UGMM). Then, we leverage the advantage of the statistic model to overcome the noise and density variants, and uses the alignment score in the UGMM to supervise the network training. To achieve this motivation, we propose a new unsupervised learning-based probabilistic registration algorithm to reconstruct the unified GMM and solve the registration problem simultaneously. The proposed method formulates the registration problem into a clustering problem, which estimates the posterior probability that classifies the points of two input point clouds to components of the unified GMM. A new feature interaction module is designed to learn the posterior probability using both the self and cross point cloud information. Then, two differential modules are proposed to calculate the GMM parameters and transformation matrices. Experimental results on synthetic and real-world point cloud datasets demonstrate that our unsupervised method achieves better registration accuracy and efficiency than the state-of-the-art supervised and semi-supervised methods in handling noisy and density variant point clouds.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tina发布了新的文献求助30
刚刚
midus发布了新的文献求助10
刚刚
1秒前
wcy发布了新的文献求助10
1秒前
言欢完成签到,获得积分20
2秒前
无敌龙傲天完成签到,获得积分10
3秒前
3秒前
4秒前
asd应助daisy采纳,获得30
4秒前
4秒前
笨笨水儿完成签到 ,获得积分10
4秒前
6秒前
Otorhino完成签到 ,获得积分10
6秒前
6秒前
7秒前
7秒前
YingyingFan发布了新的文献求助10
8秒前
8秒前
Ccccsa发布了新的文献求助10
8秒前
背后的惜珊完成签到 ,获得积分10
9秒前
LZX完成签到,获得积分20
9秒前
123456发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
优雅酸奶发布了新的文献求助10
11秒前
11秒前
Feathamity发布了新的文献求助10
11秒前
温暖的子骞完成签到,获得积分10
13秒前
pancake应助ACE采纳,获得50
13秒前
15秒前
17秒前
木木发布了新的文献求助30
17秒前
木泽发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
20秒前
20秒前
雾1206发布了新的文献求助10
20秒前
英俊的铭应助小木林采纳,获得10
21秒前
无极微光发布了新的文献求助20
21秒前
华仔应助123456采纳,获得10
21秒前
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Advanced Memory Technology: Functional Materials and Devices 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675174
求助须知:如何正确求助?哪些是违规求助? 4943579
关于积分的说明 15151713
捐赠科研通 4834349
什么是DOI,文献DOI怎么找? 2589438
邀请新用户注册赠送积分活动 1543035
关于科研通互助平台的介绍 1501031