Unsupervised Point Cloud Registration by Learning Unified Gaussian Mixture Models

点云 计算机科学 人工智能 混合模型 杠杆(统计) 聚类分析 模式识别(心理学) 无监督学习 概率逻辑 转化(遗传学) 噪音(视频) 机器学习 数据挖掘 图像(数学) 基因 化学 生物化学
作者
Xiaoshui Huang,Sheng Li,Yifan Zuo,Yuming Fang,Jian Zhang,Xiaowei Zhao
出处
期刊:IEEE robotics and automation letters 卷期号:7 (3): 7028-7035 被引量:18
标识
DOI:10.1109/lra.2022.3180443
摘要

Sampling noise and density variation widely exist in the point cloud acquisition process, leading to few accurate point-to-point correspondences. Since they rely on point-to-point correspondence search, existing state-of-the-art point cloud registration methods face difficulty in overcoming the sampling noise and density variation accurately or efficiently. Moreover, the recent state-of-the-art learning-based methods requires ground-truth transformation as supervised information which lead to large labor costs in real scenes. In this paper, our motivation is that two point-clouds are considered two samples from a unified Gaussian Mixture Model (UGMM). Then, we leverage the advantage of the statistic model to overcome the noise and density variants, and uses the alignment score in the UGMM to supervise the network training. To achieve this motivation, we propose a new unsupervised learning-based probabilistic registration algorithm to reconstruct the unified GMM and solve the registration problem simultaneously. The proposed method formulates the registration problem into a clustering problem, which estimates the posterior probability that classifies the points of two input point clouds to components of the unified GMM. A new feature interaction module is designed to learn the posterior probability using both the self and cross point cloud information. Then, two differential modules are proposed to calculate the GMM parameters and transformation matrices. Experimental results on synthetic and real-world point cloud datasets demonstrate that our unsupervised method achieves better registration accuracy and efficiency than the state-of-the-art supervised and semi-supervised methods in handling noisy and density variant point clouds.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怕黑剑封发布了新的文献求助10
刚刚
2秒前
Eon完成签到,获得积分10
2秒前
3秒前
3秒前
令狐秋双完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
江边鸟完成签到 ,获得积分10
5秒前
微笑翠桃完成签到,获得积分20
6秒前
小开心发布了新的文献求助10
6秒前
Eon发布了新的文献求助10
6秒前
姚美阁完成签到 ,获得积分10
7秒前
mufcyang发布了新的文献求助10
8秒前
9秒前
9秒前
Puffkten发布了新的文献求助10
10秒前
与梦随行2011完成签到,获得积分10
10秒前
10秒前
高哈哈哈完成签到,获得积分10
11秒前
yr发布了新的文献求助10
14秒前
15秒前
微笑翠桃发布了新的文献求助10
18秒前
18秒前
马佳音完成签到 ,获得积分10
19秒前
在水一方应助Eon采纳,获得10
19秒前
TB123发布了新的文献求助10
19秒前
21秒前
JHL完成签到 ,获得积分10
21秒前
23秒前
23秒前
黎是叻熠黎完成签到,获得积分10
24秒前
每天必补一科完成签到,获得积分10
24秒前
花生完成签到,获得积分10
25秒前
mufcyang完成签到,获得积分10
25秒前
26秒前
缪缪发布了新的文献求助10
27秒前
27秒前
风清扬发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637867
求助须知:如何正确求助?哪些是违规求助? 4744182
关于积分的说明 15000410
捐赠科研通 4796064
什么是DOI,文献DOI怎么找? 2562285
邀请新用户注册赠送积分活动 1521829
关于科研通互助平台的介绍 1481714