Unsupervised Point Cloud Registration by Learning Unified Gaussian Mixture Models

点云 计算机科学 人工智能 混合模型 杠杆(统计) 聚类分析 模式识别(心理学) 无监督学习 概率逻辑 转化(遗传学) 噪音(视频) 机器学习 数据挖掘 图像(数学) 基因 化学 生物化学
作者
Xiaoshui Huang,Sheng Li,Yifan Zuo,Yuming Fang,Jian Zhang,Xiaowei Zhao
出处
期刊:IEEE robotics and automation letters 卷期号:7 (3): 7028-7035 被引量:18
标识
DOI:10.1109/lra.2022.3180443
摘要

Sampling noise and density variation widely exist in the point cloud acquisition process, leading to few accurate point-to-point correspondences. Since they rely on point-to-point correspondence search, existing state-of-the-art point cloud registration methods face difficulty in overcoming the sampling noise and density variation accurately or efficiently. Moreover, the recent state-of-the-art learning-based methods requires ground-truth transformation as supervised information which lead to large labor costs in real scenes. In this paper, our motivation is that two point-clouds are considered two samples from a unified Gaussian Mixture Model (UGMM). Then, we leverage the advantage of the statistic model to overcome the noise and density variants, and uses the alignment score in the UGMM to supervise the network training. To achieve this motivation, we propose a new unsupervised learning-based probabilistic registration algorithm to reconstruct the unified GMM and solve the registration problem simultaneously. The proposed method formulates the registration problem into a clustering problem, which estimates the posterior probability that classifies the points of two input point clouds to components of the unified GMM. A new feature interaction module is designed to learn the posterior probability using both the self and cross point cloud information. Then, two differential modules are proposed to calculate the GMM parameters and transformation matrices. Experimental results on synthetic and real-world point cloud datasets demonstrate that our unsupervised method achieves better registration accuracy and efficiency than the state-of-the-art supervised and semi-supervised methods in handling noisy and density variant point clouds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
学科共进完成签到,获得积分10
1秒前
百草27完成签到,获得积分10
1秒前
2秒前
3秒前
4秒前
绵马紫萁发布了新的文献求助10
4秒前
5秒前
fzhou完成签到 ,获得积分10
5秒前
尘雾发布了新的文献求助10
5秒前
6秒前
一一发布了新的文献求助20
6秒前
6秒前
Aixia完成签到 ,获得积分10
7秒前
葡萄糖完成签到,获得积分10
7秒前
哈哈完成签到,获得积分10
7秒前
在水一方应助CC采纳,获得10
7秒前
7秒前
余笙完成签到 ,获得积分10
8秒前
神勇的雅香应助科研混子采纳,获得10
8秒前
TT发布了新的文献求助10
9秒前
李顺完成签到,获得积分20
10秒前
ayin发布了新的文献求助10
10秒前
wait发布了新的文献求助10
10秒前
我是站长才怪应助xg采纳,获得10
11秒前
童话艺术佳完成签到,获得积分10
11秒前
稀罕你完成签到,获得积分10
11秒前
junzilan发布了新的文献求助10
11秒前
anny.white完成签到,获得积分10
12秒前
科研通AI5应助平常的毛豆采纳,获得10
14秒前
SciGPT应助paul采纳,获得10
17秒前
19秒前
英姑应助书生采纳,获得10
20秒前
科研钓鱼佬完成签到,获得积分10
21秒前
23秒前
petrichor应助C_Cppp采纳,获得10
23秒前
nan完成签到,获得积分10
23秒前
23秒前
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824