Unsupervised Point Cloud Registration by Learning Unified Gaussian Mixture Models

点云 计算机科学 人工智能 混合模型 杠杆(统计) 聚类分析 模式识别(心理学) 无监督学习 概率逻辑 转化(遗传学) 噪音(视频) 机器学习 数据挖掘 图像(数学) 基因 化学 生物化学
作者
Xiaoshui Huang,Sheng Li,Yifan Zuo,Yuming Fang,Jian Zhang,Xiaowei Zhao
出处
期刊:IEEE robotics and automation letters 卷期号:7 (3): 7028-7035 被引量:18
标识
DOI:10.1109/lra.2022.3180443
摘要

Sampling noise and density variation widely exist in the point cloud acquisition process, leading to few accurate point-to-point correspondences. Since they rely on point-to-point correspondence search, existing state-of-the-art point cloud registration methods face difficulty in overcoming the sampling noise and density variation accurately or efficiently. Moreover, the recent state-of-the-art learning-based methods requires ground-truth transformation as supervised information which lead to large labor costs in real scenes. In this paper, our motivation is that two point-clouds are considered two samples from a unified Gaussian Mixture Model (UGMM). Then, we leverage the advantage of the statistic model to overcome the noise and density variants, and uses the alignment score in the UGMM to supervise the network training. To achieve this motivation, we propose a new unsupervised learning-based probabilistic registration algorithm to reconstruct the unified GMM and solve the registration problem simultaneously. The proposed method formulates the registration problem into a clustering problem, which estimates the posterior probability that classifies the points of two input point clouds to components of the unified GMM. A new feature interaction module is designed to learn the posterior probability using both the self and cross point cloud information. Then, two differential modules are proposed to calculate the GMM parameters and transformation matrices. Experimental results on synthetic and real-world point cloud datasets demonstrate that our unsupervised method achieves better registration accuracy and efficiency than the state-of-the-art supervised and semi-supervised methods in handling noisy and density variant point clouds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
无花果应助陈懒懒采纳,获得10
1秒前
Liu发布了新的文献求助10
2秒前
小马甲应助高兴微笑采纳,获得10
2秒前
2秒前
2秒前
djiwisksk66应助Zzj采纳,获得10
2秒前
3秒前
大个应助LHYX采纳,获得10
3秒前
阿北发布了新的文献求助10
3秒前
3秒前
周婕妤发布了新的文献求助10
4秒前
4秒前
zhangyining发布了新的文献求助10
5秒前
5秒前
三有青年发布了新的文献求助10
5秒前
Jozee发布了新的文献求助10
5秒前
华仔应助Teresa采纳,获得10
5秒前
5秒前
lulululululu完成签到,获得积分10
5秒前
orange发布了新的文献求助10
5秒前
丘比特应助乐观的海豚采纳,获得10
6秒前
向雨竹发布了新的文献求助10
6秒前
年轻半雪发布了新的文献求助10
6秒前
脑洞疼应助甜美的雁开采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
洋芋片发布了新的文献求助50
6秒前
7秒前
bingbing发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
菠萝炒饭应助houchengru采纳,获得10
8秒前
zhangyining完成签到,获得积分20
9秒前
9秒前
高兴绿柳完成签到 ,获得积分10
9秒前
10秒前
丘丘完成签到,获得积分10
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951758
求助须知:如何正确求助?哪些是违规求助? 3497124
关于积分的说明 11086059
捐赠科研通 3227597
什么是DOI,文献DOI怎么找? 1784497
邀请新用户注册赠送积分活动 868586
科研通“疑难数据库(出版商)”最低求助积分说明 801154