Unsupervised Point Cloud Registration by Learning Unified Gaussian Mixture Models

点云 计算机科学 人工智能 混合模型 杠杆(统计) 聚类分析 模式识别(心理学) 无监督学习 概率逻辑 转化(遗传学) 噪音(视频) 机器学习 数据挖掘 图像(数学) 基因 化学 生物化学
作者
Xiaoshui Huang,Sheng Li,Yifan Zuo,Yuming Fang,Jian Zhang,Xiaowei Zhao
出处
期刊:IEEE robotics and automation letters 卷期号:7 (3): 7028-7035 被引量:18
标识
DOI:10.1109/lra.2022.3180443
摘要

Sampling noise and density variation widely exist in the point cloud acquisition process, leading to few accurate point-to-point correspondences. Since they rely on point-to-point correspondence search, existing state-of-the-art point cloud registration methods face difficulty in overcoming the sampling noise and density variation accurately or efficiently. Moreover, the recent state-of-the-art learning-based methods requires ground-truth transformation as supervised information which lead to large labor costs in real scenes. In this paper, our motivation is that two point-clouds are considered two samples from a unified Gaussian Mixture Model (UGMM). Then, we leverage the advantage of the statistic model to overcome the noise and density variants, and uses the alignment score in the UGMM to supervise the network training. To achieve this motivation, we propose a new unsupervised learning-based probabilistic registration algorithm to reconstruct the unified GMM and solve the registration problem simultaneously. The proposed method formulates the registration problem into a clustering problem, which estimates the posterior probability that classifies the points of two input point clouds to components of the unified GMM. A new feature interaction module is designed to learn the posterior probability using both the self and cross point cloud information. Then, two differential modules are proposed to calculate the GMM parameters and transformation matrices. Experimental results on synthetic and real-world point cloud datasets demonstrate that our unsupervised method achieves better registration accuracy and efficiency than the state-of-the-art supervised and semi-supervised methods in handling noisy and density variant point clouds.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助10
2秒前
许译匀发布了新的文献求助10
2秒前
嘿嘿发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
能干冰露完成签到,获得积分10
4秒前
4秒前
发疯完成签到,获得积分10
4秒前
共享精神应助聪明的水绿采纳,获得10
5秒前
完美世界应助牛牛牛采纳,获得10
5秒前
学术牛马完成签到 ,获得积分10
5秒前
6秒前
Jasper应助许译匀采纳,获得10
7秒前
8秒前
lmy9988发布了新的文献求助10
8秒前
333发布了新的文献求助10
10秒前
10秒前
请叫我女侠完成签到,获得积分10
10秒前
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
浮游应助惔惔惔采纳,获得10
12秒前
tranphucthinh发布了新的文献求助10
12秒前
123完成签到,获得积分10
12秒前
俊逸艳一发布了新的文献求助30
12秒前
结实星星发布了新的文献求助10
13秒前
fuxiu完成签到,获得积分10
13秒前
13秒前
HtObama发布了新的文献求助10
13秒前
13秒前
dmq完成签到 ,获得积分10
13秒前
14秒前
Pepsi发布了新的文献求助10
14秒前
14秒前
14秒前
动听无声完成签到,获得积分10
15秒前
16秒前
FashionBoy应助风趣的梦易采纳,获得10
17秒前
无名发布了新的文献求助30
17秒前
张飞飞飞飞飞完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5680022
求助须知:如何正确求助?哪些是违规求助? 4995227
关于积分的说明 15171337
捐赠科研通 4839788
什么是DOI,文献DOI怎么找? 2593645
邀请新用户注册赠送积分活动 1546635
关于科研通互助平台的介绍 1504749