Unsupervised Point Cloud Registration by Learning Unified Gaussian Mixture Models

点云 计算机科学 人工智能 混合模型 杠杆(统计) 聚类分析 模式识别(心理学) 无监督学习 概率逻辑 转化(遗传学) 噪音(视频) 机器学习 数据挖掘 图像(数学) 基因 化学 生物化学
作者
Xiaoshui Huang,Sheng Li,Yifan Zuo,Yuming Fang,Jian Zhang,Xiaowei Zhao
出处
期刊:IEEE robotics and automation letters 卷期号:7 (3): 7028-7035 被引量:18
标识
DOI:10.1109/lra.2022.3180443
摘要

Sampling noise and density variation widely exist in the point cloud acquisition process, leading to few accurate point-to-point correspondences. Since they rely on point-to-point correspondence search, existing state-of-the-art point cloud registration methods face difficulty in overcoming the sampling noise and density variation accurately or efficiently. Moreover, the recent state-of-the-art learning-based methods requires ground-truth transformation as supervised information which lead to large labor costs in real scenes. In this paper, our motivation is that two point-clouds are considered two samples from a unified Gaussian Mixture Model (UGMM). Then, we leverage the advantage of the statistic model to overcome the noise and density variants, and uses the alignment score in the UGMM to supervise the network training. To achieve this motivation, we propose a new unsupervised learning-based probabilistic registration algorithm to reconstruct the unified GMM and solve the registration problem simultaneously. The proposed method formulates the registration problem into a clustering problem, which estimates the posterior probability that classifies the points of two input point clouds to components of the unified GMM. A new feature interaction module is designed to learn the posterior probability using both the self and cross point cloud information. Then, two differential modules are proposed to calculate the GMM parameters and transformation matrices. Experimental results on synthetic and real-world point cloud datasets demonstrate that our unsupervised method achieves better registration accuracy and efficiency than the state-of-the-art supervised and semi-supervised methods in handling noisy and density variant point clouds.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
米糊完成签到,获得积分10
1秒前
1秒前
聆风完成签到 ,获得积分10
1秒前
嘻嘻哈哈完成签到 ,获得积分10
2秒前
2秒前
2秒前
Daria完成签到 ,获得积分10
4秒前
4秒前
任1完成签到,获得积分10
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
迅速采梦发布了新的文献求助10
6秒前
叶燕完成签到 ,获得积分10
7秒前
qing_li完成签到,获得积分10
8秒前
8秒前
9秒前
情怀应助KALIdemo158采纳,获得20
9秒前
djshao应助Yuan采纳,获得10
9秒前
孟超发布了新的文献求助10
9秒前
可爱的梦菲完成签到,获得积分10
10秒前
10秒前
天天快乐应助宇称yu采纳,获得10
11秒前
火星上小土豆完成签到 ,获得积分10
11秒前
阿苏完成签到 ,获得积分10
13秒前
旺旺小小贝完成签到,获得积分10
14秒前
Mlwwq发布了新的文献求助10
14秒前
14秒前
Jasper应助Ningxin采纳,获得50
15秒前
忧伤的绍辉完成签到 ,获得积分10
18秒前
孟超完成签到,获得积分20
19秒前
无极微光应助wangqing采纳,获得20
20秒前
李爱国应助杨儿采纳,获得30
21秒前
Jahen完成签到,获得积分10
22秒前
22秒前
23秒前
李李李应助迅速采梦采纳,获得10
24秒前
CipherSage应助KALIdemo158采纳,获得20
25秒前
zhang完成签到,获得积分10
28秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600606
求助须知:如何正确求助?哪些是违规求助? 4686243
关于积分的说明 14842399
捐赠科研通 4677148
什么是DOI,文献DOI怎么找? 2538898
邀请新用户注册赠送积分活动 1505830
关于科研通互助平台的介绍 1471201