A Fair and Rational Data Sharing Strategy Toward Two-Stage Industrial Internet of Things

计算机科学 任务(项目管理) 数据共享 过程(计算) 互联网 物联网 工业互联网 分布式计算 计算机安全 万维网 工程类 替代医学 系统工程 病理 操作系统 医学
作者
Xu Zheng,Ling Tian,Zhipeng Cai
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (1): 1088-1096 被引量:1
标识
DOI:10.1109/tii.2022.3179361
摘要

The easy and pervasive involvement of devices in Industrial Internet of Things has greatly benefited the implementation and adoption of various smart services. One prominent prerequisite of such trends is the extensive and continuous support and sharing of data and resources among devices. However, previous efforts usually treat the data sharing as one-time task among devices, which are incapable when the data are applied for the distributed and iterative training task of machine learning models. Therefore, this article proposes a novel framework for continuous data sharing in Industrial Internet of Things. The system consists of different system owners, each brings devices and participate the distributed training of models. Specifically, system owners hold different scales of devices, data, and resources, while devices own heterogeneous availability in different time periods. In this case, the goal is to properly assign devices for qualified model training process in different rounds, such that no devices will devote unlimited resources and the overall efforts and consumptions among different owners are balanced. Accordingly, three algorithms for device allocation are proposed, based on whether the availability of devices in each training round are known at the beginning of the training procedure. The analysis shows that all algorithms can achieve a rational allocation for devices and balance the performance among system owners. Finally, evaluation results reveal that the proposed solutions outperform baseline methods in providing better data sharing plans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
dellajj发布了新的文献求助10
2秒前
李健应助小强呀采纳,获得10
3秒前
4秒前
wanci应助科研通管家采纳,获得10
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
KukudMing应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
烟花应助科研通管家采纳,获得10
5秒前
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
共享精神应助刘燕采纳,获得10
6秒前
追寻紫安应助夏腻123采纳,获得30
7秒前
7秒前
小强呀完成签到,获得积分10
8秒前
bcc应助小唐采纳,获得20
9秒前
小鹅发布了新的文献求助10
10秒前
葡萄干应助笑点低采文采纳,获得30
11秒前
qaw发布了新的文献求助10
11秒前
深情安青应助超123采纳,获得10
12秒前
12秒前
14秒前
16秒前
duanhuiyuan应助浅浅采纳,获得30
17秒前
17秒前
17秒前
Hello应助能干的邹采纳,获得10
17秒前
22秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459542
求助须知:如何正确求助?哪些是违规求助? 3053895
关于积分的说明 9039379
捐赠科研通 2743266
什么是DOI,文献DOI怎么找? 1504749
科研通“疑难数据库(出版商)”最低求助积分说明 695392
邀请新用户注册赠送积分活动 694685