Development of Artificial Intelligence for Parathyroid Recognition During Endoscopic Thyroid Surgery

医学 甲状旁腺 队列 鉴定(生物学) 人工智能 外科 甲状旁腺激素 内科学 计算机科学 植物 生物
作者
Bo Wang,Jing Zheng,Jia‐Fan Yu,Si‐Ying Lin,Shouyi Yan,Li‐Yong Zhang,Sisi Wang,Shao‐Jun Cai,Amr H. Abdelhamid Ahmed,Lan‐Qin Lin,Fei Chen,Gregory W. Randolph,Wenxin Zhao
出处
期刊:Laryngoscope [Wiley]
卷期号:132 (12): 2516-2523 被引量:23
标识
DOI:10.1002/lary.30173
摘要

Objective We aimed to establish an artificial intelligence (AI) model to identify parathyroid glands during endoscopic approaches and compare it with senior and junior surgeons' visual estimation. Methods A total of 1,700 images of parathyroid glands from 166 endoscopic thyroidectomy videos were labeled. Data from 20 additional full‐length videos were used as an independent external cohort. The YOLO V3, Faster R‐CNN, and Cascade algorithms were used for deep learning, and the optimal algorithm was selected for independent external cohort analysis. Finally, the identification rate, initial recognition time, and tracking periods of PTAIR (Artificial Intelligence model for Parathyroid gland Recognition), junior surgeons, and senior surgeons were compared. Results The Faster R‐CNN algorithm showed the best balance after optimizing the hyperparameters of each algorithm and was updated as PTAIR. The precision, recall rate, and F1 score of the PTAIR were 88.7%, 92.3%, and 90.5%, respectively. In the independent external cohort, the parathyroid identification rates of PTAIR, senior surgeons, and junior surgeons were 96.9%, 87.5%, and 71.9%, respectively. In addition, PTAIR recognized parathyroid glands 3.83 s ahead of the senior surgeons ( p = 0.008), with a tracking period 62.82 s longer than the senior surgeons ( p = 0.006). Conclusions PTAIR can achieve earlier identification and full‐time tracing under a particular training strategy. The identification rate of PTAIR is higher than that of junior surgeons and similar to that of senior surgeons. Such systems may have utility in improving surgical outcomes and also in accelerating the education of junior surgeons. Level of Evidence 3 Laryngoscope , 132:2516–2523, 2022
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XT666完成签到,获得积分10
刚刚
学术混子完成签到,获得积分10
刚刚
AA完成签到,获得积分10
刚刚
灵巧代柔完成签到,获得积分10
1秒前
糖豆豆吃豆豆完成签到,获得积分10
1秒前
无辜竺完成签到 ,获得积分10
2秒前
3秒前
xiongyuan完成签到,获得积分10
3秒前
司徒不正发布了新的文献求助30
4秒前
追寻的访烟完成签到,获得积分10
4秒前
xiuwen发布了新的文献求助10
5秒前
5秒前
学术混子发布了新的文献求助10
5秒前
无聊的老姆完成签到 ,获得积分10
6秒前
岁月如酒发布了新的文献求助10
6秒前
噜噜噜噜噜完成签到,获得积分10
6秒前
yookia应助一人一般采纳,获得10
6秒前
Hello应助张远幸采纳,获得10
7秒前
FireNow完成签到,获得积分10
7秒前
Muhammad发布了新的文献求助10
8秒前
restudy68完成签到,获得积分10
8秒前
情怀应助美满的天薇采纳,获得10
8秒前
我还不困完成签到,获得积分10
9秒前
10秒前
熠熠完成签到,获得积分10
10秒前
小王完成签到,获得积分10
10秒前
10秒前
xiuwen完成签到,获得积分10
11秒前
Jasper应助合适台灯采纳,获得10
11秒前
岁月如酒完成签到,获得积分10
12秒前
LLL完成签到,获得积分10
12秒前
12秒前
温柔的蛋挞完成签到,获得积分10
12秒前
quanjiazhi给quanjiazhi的求助进行了留言
12秒前
13秒前
法鱿科完成签到,获得积分10
13秒前
虚幻盼晴完成签到,获得积分10
13秒前
13秒前
zxm完成签到,获得积分10
15秒前
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953688
求助须知:如何正确求助?哪些是违规求助? 3499494
关于积分的说明 11095814
捐赠科研通 3230038
什么是DOI,文献DOI怎么找? 1785859
邀请新用户注册赠送积分活动 869602
科研通“疑难数据库(出版商)”最低求助积分说明 801479